2019
Autores
Almeida, JB; Baritel Ruet, C; Barbosa, M; Barthe, G; Dupressoir, F; Gregoire, B; Laporte, V; Oliveira, T; Stoughton, A; Strub, PY;
Publicação
PROCEEDINGS OF THE 2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'19)
Abstract
We present a high-assurance and high-speed implementation of the SHA-3 hash function. Our implementation is written in the Jasmin programming language, and is formally verified for functional correctness, provable security and timing attack resistance in the EasyCrypt proof assistant. Our implementation is the first to achieve simultaneously the four desirable properties (efficiency, correctness, provable security, and side-channel protection) for a non-trivial cryptographic primitive. Concretely, our mechanized proofs show that: 1) the SHA-3 hash function is indifferentiable from a random oracle, and thus is resistant against collision, first and second preimage attacks; 2) the SHA-3 hash function is correctly implemented by a vectorized x86 implementation. Furthermore, the implementation is provably protected against timing attacks in an idealized model of timing leaks. The proofs include new EasyCrypt libraries of independent interest for programmable random oracles and modular indifferentiability proofs.
2020
Autores
Almeida, JB; Barbosa, M; Barthe, G; Laporte, V; Oliveira, T;
Publicação
Progress in Cryptology - INDOCRYPT 2020 - 21st International Conference on Cryptology in India, Bangalore, India, December 13-16, 2020, Proceedings
Abstract
We present a new tool for the generation and verification of high-assurance high-speed machine-level cryptography implementations: a certified C compiler supporting instruction extensions to the x86. We demonstrate the practical applicability of our tool by incorporating it into supercop: a toolkit for measuring the performance of cryptographic software, which includes over 2000 different implementations. We show i. that the coverage of x86 implementations in supercop increases significantly due to the added support of instruction extensions via intrinsics and ii. that the obtained verifiably correct implementations are much closer in performance to unverified ones. We extend our compiler with a specialized type system that acts at pre-assembly level; this is the first constant-time verifier that can deal with extended instruction sets. We confirm that, by using instruction extensions, the performance penalty for verifiably constant-time code can be greatly reduced. © Springer Nature Switzerland AG 2020.
2021
Autores
Almeida, JB; Barbosa, M; Correia, ML; Eldefrawy, K; Graham-Lengrand, S; Pacheco, H; Pereira, V;
Publicação
CCS '21: PROCEEDINGS OF THE 2021 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY
Abstract
MPC-in-the-Head (MitH) is a general framework that enables constructing efficient zero-knowledge (ZK) protocols for NP relations from secure multiparty computation (MPC) protocols. In this paper we present the first machine-checked implementations of MitH. We begin with an EasyCrypt formalization that preserves the modular structure of the original construction and can be instantiated with arbitrary MPC protocols, and secret sharing and commitment schemes satisfying standard notions of security. We then formalize various suitable components, which we use to obtain full-fledged ZK protocols for general relations. We compare two approaches for obtaining verified executable implementations. The first uses a fully automated extraction from EasyCrypt to OCaml. The second reduces the trusted computing base (TCB) and provides better performance by combining code extraction with formally verified manual low-level components implemented in the Jasmin language. We conclude with a discussion of the trade-off between the formal verification effort and the performance of resulting executables, and how our approach opens the way for fully verified implementations of state-of the-art optimized protocols based on MitH.
2022
Autores
Almeida, JCB; Barbosa, M; Barthe, G; Pacheco, H; Pereira, V; Portela, B;
Publicação
JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING
Abstract
Secure multiparty computation (SMC) allows for complex computations over encrypted data. Privacy concerns for cloud applications makes this a highly desired technology and recent performance improvements show that it is practical. To make SMC accessible to non-experts and empower its use in varied applications, many domain-specific compilers are being proposed.We review the role of these compilers and provide a formal treatment of the core steps that they perform to bridge the abstraction gap between high-level ideal specifications and efficient SMC protocols. Our abstract framework bridges this secure compilation problem across two dimensions: 1) language-based source- to target-level semantic and efficiency gaps, and 2) cryptographic ideal- to real-world security gaps. We link the former to the setting of certified compilation, paving the way to leverage long-run efforts such as CompCert in future SMC compilers. Security is framed in the standard cryptographic sense. Our results are supported by a machine-checked formalisation carried out in EasyCrypt.
2022
Autores
Grilo, M; Campos, J; Ferreira, JF; Almeida, JB; Mendes, A;
Publicação
INTEGRATED FORMAL METHODS, IFM 2022
Abstract
Password managers (PMs) are important tools that enable the use of stronger passwords, freeing users from the cognitive burden of remembering them. Despite this, there are still many users who do not fully trust PMs. In this paper, we focus on a feature that most PMs offer that might impact the user's trust, which is the process of generating a random password. We present three of the most commonly used algorithms and we propose a solution for a formally verified reference implementation of a password generation algorithm. We use EasyCrypt to specify and verify our reference implementation. In addition, we present a proof-of-concept prototype that extends Bitwarden to only generate compliant passwords, solving a frequent users' frustration with PMs. This demonstrates that our formally verified component can be integrated into an existing (and widely used) PM.
2023
Autores
Almeida, JB; Barbosa, M; Barthe, G; Grégoire, B; Laporte, V; Léchenet, JC; Oliveira, T; Pacheco, H; Quaresma, M; Schwabe, P; Séré, A; Strub, PY;
Publicação
IACR Trans. Cryptogr. Hardw. Embed. Syst.
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.