Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Hugo Pereira Pacheco

2020

ROSY: An elegant language to teach the pure reactive nature of robot programming

Autores
Pacheco, H; Macedo, N;

Publicação
Fourth IEEE International Conference on Robotic Computing, IRC 2020, Taichung, Taiwan, November 9-11, 2020

Abstract
Robotics is very appealing and is long recognized as a great way to teach programming, while drawing inspiring connections to other branches of engineering and science such as maths, physics or electronics. Although this symbiotic relationship between robotics and programming is perceived as largely beneficial, educational approaches often feel the need to hide the underlying complexity of the robotic system, but as a result fail to transmit the reactive essence of robot programming to the roboticists and programmers of the future. This paper presents ROSY, a novel language for teaching novice programmers through robotics. Its functional style is both familiar with a high-school algebra background and a materialization of the inherent reactive nature of robotic programming. Working at a higher-level of abstraction also teaches valuable design principles of decomposition of robotics software into collections of interacting controllers. Despite its simplicity, ROSY is completely valid Haskell code compatible with the ROS ecosystem. We make a convincing case for our language by demonstrating how non-trivial applications can be expressed with ease and clarity, exposing its sound functional programming foundations, and developing a web-enabled robot programming environment. © 2020 IEEE.

2023

Formally verifying Kyber Part I: Implementation Correctness

Autores
Almeida, JB; Barbosa, M; Barthe, G; Grégoire, B; Laporte, V; Léchenet, JC; Oliveira, T; Pacheco, H; Quaresma, M; Schwabe, P; Séré, A; Strub, PY;

Publicação
IACR Cryptol. ePrint Arch.

Abstract

2021

Machine-checked ZKP for NP-relations: Formally Verified Security Proofs and Implementations of MPC-in-the-Head

Autores
Almeida, JB; Barbosa, M; Correia, ML; Eldefrawy, K; Lengrand, SG; Pacheco, H; Pereira, V;

Publicação
IACR Cryptol. ePrint Arch.

Abstract

2021

Machine-checked ZKP for NP-relations: Formally Verified Security Proofs and Implementations of MPC-in-the-Head

Autores
Bacelar Almeida, JC; Barbosa, M; Eldefrawy, K; Lengrand, SG; Pacheco, H; Pereira, V;

Publicação
CoRR

Abstract

2018

hnforcing ideal-world leakage bounds in real-world secret sharing MPC frameworks

Autores
Almeida, JB; Barbosa, M; Barthe, G; Pacheco, H; Pereira, V; Portela, B;

Publicação
IEEE 31ST COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF 2018)

Abstract
We give a language-based security treatment of domain-specific languages and compilers for secure multi-party computation, a cryptographic paradigm that. enables collaborative computation over encrypted data. Computations are specified in a core imperative language, as if they were intended to be executed by a trusted-third party, and formally verified against. an information-flow policy modelling (an upper bound to) their leakage. This allows non-experts to assess the impact of performance driven authorized disclosure of intermediate values. Specifications are then compiled to multi-party protocols. We formalize protocol security using (distributed) probabilistic information-flow and prove security-preserving compilation: protocols only leak what. is allowed by the source policy. The proof exploits a natural but previously missing correspondence between simulation-based cryptographic proofs and (composable) probabilistic non-interference. Finally, we extend our framework to justify leakage cancelling, a domain-specific optimization that allows to first write an efficient specification that fails to meet the allowed leakage upper-bound, and then apply a probabilistic preprocessing that brings leakage to the acceptable range.

2024

Formally Verifying Kyber Episode V: Machine-Checked IND-CCA Security and Correctness of ML-KEM in EasyCrypt

Autores
Almeida, JB; Olmos, SA; Barbosa, M; Barthe, G; Dupressoir, F; Grégoire, B; Laporte, V; Lechenet, JC; Low, C; Oliveira, T; Pacheco, H; Quaresma, M; Schwabe, P; Strub, PY;

Publicação
ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT II

Abstract
We present a formally verified proof of the correctness and IND-CCA security of ML-KEM, the Kyber-based Key Encapsulation Mechanism (KEM) undergoing standardization by NIST. The proof is machine-checked in EasyCrypt and it includes: 1) A formalization of the correctness (decryption failure probability) and IND-CPA security of the Kyber base public-key encryption scheme, following Bos et al. at Euro S&P 2018; 2) A formalization of the relevant variant of the Fujisaki-Okamoto transform in the Random Oracle Model (ROM), which follows closely (but not exactly) Hofheinz, Hovelmanns and Kiltz at TCC 2017; 3) A proof that the IND-CCA security of the ML-KEM specification and its correctness as a KEM follows from the previous results; 4) Two formally verified implementations of ML-KEM written in Jasmin that are provably constant-time, functionally equivalent to the ML-KEM specification and, for this reason, inherit the provable security guarantees established in the previous points. The top-level theorems give self-contained concrete bounds for the correctness and security of ML-KEM down to (a variant of) Module-LWE. We discuss how they are built modularly by leveraging various EasyCrypt features.

  • 6
  • 6