Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Paulo Martins

2024

The Application of Artificial Intelligence in Recommendation Systems Reinforced Through Assurance of Learning in Personalized Environments of e-Learning

Autores
Fresneda-Bottaro, F; Santos, A; Martins, P; Reis, L;

Publicação
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2, WORLDCIST 2023

Abstract
Learning environments unquestionably enable learners to develop their pedagogical and scientific processes efficiently and effectively. Thus, considering the impossibility of not having conditions of autonomy over the routine underlying the studies and, consequently, not having guarantees of the learning carried out makes the learners experience gaps in the domain of materials adequate to their actual needs. The paper's objective is to present the relevance of the applicability of Artificial Intelligence in Recommendation Systems, reinforced through the Assurance of Learning, oriented towards adaptive-personalized practice in corporate e-learning contexts. The research methodology underlying the work fell on Design Science Research, as it is considered adequate to support the research, given the need to carry out the design phases, development, construction, evaluation, validation of the artefact and, finally, communication of the results. The main results instigate the development of an Adaptive-Personalized Learning framework for corporate e-learning, provided with models of Artificial Intelligence and guided using the Assurance of Learning process. It becomes central that learners can enjoy adequate academic development. In this sense, the framework has an implicit structure that promotes the definition of personalized attributes, which involves recommendations and customizations of content per profile, including training content that will be suggested and learning activity content that will be continuously monitored, given the specific needs of learners.

  • 18
  • 18