Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por António Valente

2024

Designing Stemie, the Evolution of the Kid Grígora Educational Robot

Autores
Barradas, R; Lencastre, JA; Soares, S; Valente, A;

Publicação
Proceedings of the 16th International Conference on Computer Supported Education, CSEDU 2024, Angers, France, May 2-4, 2024, Volume 1.

Abstract
STEM education advances at the same rate as the need for new and more evolved tools. This article introduces the latest version of the Kid Grígora educational robot, based on the work of Barradas et al. (2019). Targeted for students aged 8 to 18, the robot serves as an interdisciplinary teaching tool, integrated into STEM curricula. The upgraded version corrects what we’ve learned from a real test with 177 students from a Portuguese school and adds other features that allow this new robot to be used in even more educational STEM and problem-solving scenarios. We focused on the creation of a second beta version of the prototype, named Stemie, and its heuristic evaluation by three experts. After all the issues and suggestions from the experts have been resolved and implemented, the new version is ready for usability evaluation. Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

2024

The use of water in wineries: A review

Autores
Matos, C; Castro, M; Baptista, J; Valente, A; Briga-Sá, A;

Publicação
SCIENCE OF THE TOTAL ENVIRONMENT

Abstract
Water is essential at various stages of winemaking, from irrigation in the vineyard to cleaning equipment and facilities, controlling fermentation temperatures, and diluting grape juice if necessary. Additionally, water is used for sanitation purposes to ensure the quality and safety of the final product. This article provides an overview of the existing knowledge regarding the use of water in wineries throughout the winemaking process, water consumption values, effluent treatment, efficient use of water measures, and water reuse. Different assessment methods, including Water Footprint (WF) and Life Cycle Assessment(LCA), provide varied insights into water use impacts, emphasizing the importance of standardized methodologies for accurate assessment and sustainable practices. This research showed that the characterization of the vinification processes of each type of wine is fundamental for further analysis on the environmental impact of winemaking regarding water use. It was also observed that WF is affected by factors like climate, irrigation needs, and cleaning procedures. Thus, efficient water management in all the stages of wine production is crucial to reduce the overall WF. Water efficiency measures may involve the modification of the production processes, reusing and recycling water and the implementation of cleaner production practices and technological innovations, such as automated fermentation systems that reduce water needs. Furthermore, waste management in wineries emphasizes the importance of sustainable practices and technological innovations to mitigate environmental impacts and enhance resource efficiency.

2024

Matter Protocol Integration Using Espressif's Solutions to Achieve Smart Home Interoperability

Autores
Mota, A; Serôdio, C; Valente, A;

Publicação
ELECTRONICS

Abstract
Smart home devices are becoming more popular over the years. A diverse range of appliances is being created, and Ambient Intelligence is growing in homes. However, there are various producers of these gadgets, different kinds of protocols, and diverse environments. The lack of interoperability reduces comfort of the user and turns into a barrier to smart home adoption. Matter is growing by constructing an open-source application layer protocol that can be compatible with all smart home ecosystems. In this article, a Matter overview is provided (namely, of the Commissioning stage), and a Matter Accessory using ESP32-S3 is developed referring to the manufacturer's SDKs and is inserted into an existent household ecosystem. Its behavior on the network is briefly analyzed, and interactions with the device are carried out. The simplicity of these tasks demonstrates accessibility for developers to create products, especially when it comes to firmware. Additionally, device commissioning and control are straightforward for the consumer. This capacity of gadget incorporation into diverse ecosystems using Matter is already on the market and might result in higher device production and enhanced smart home adoption.

2024

Efficient multi-robot path planning in real environments: a centralized coordination system

Autores
Matos, DM; Costa, P; Sobreira, H; Valente, A; Lima, J;

Publicação
INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS

Abstract
With the increasing adoption of mobile robots for transporting components across several locations in industries, congestion problems appear if the movement of these robots is not correctly planned. This paper introduces a fleet management system where a central agent coordinates, plans, and supervises the fleet, mitigating the risk of deadlocks and addressing issues related to delays, deviations between the planned paths and reality, and delays in communication. The system uses the TEA* graph-based path planning algorithm to plan the paths of each agent. In conjunction with the TEA* algorithm, the concepts of supervision and graph-based environment representation are introduced. The system is based on ROS framework and allows each robot to maintain its autonomy, particularly in control and localization, while aligning its path with the plan from the central agent. The effectiveness of the proposed fleet manager is demonstrated in a real scenario where robots operate on a shop floor, showing its successful implementation.

2024

Efficient Runtime Firmware Update Mechanism for LoRaWAN Class A Devices

Autores
Neves, BP; Valente, A; Santos, VDN;

Publicação
ENG

Abstract
This paper presents an efficient and secure method for updating firmware in IoT devices using LoRaWAN network resources and communication protocols. The proposed method involves dividing the firmware into fragments, storing them in the application server's database, and transmitting them to remote IoT devices via downlink messages, without necessitating any changes to the device's class. This approach can be replicated across any IoT LoRaWAN device, offering a robust and scalable solution for large-scale firmware updates while ensuring data security and integrity. The proposed method significantly reduces the downtime of IoT devices and enhances the energy efficiency of the update process. The method was validated by updating a block in the program memory, associated to a specific functionality of the IoT end device. The associated Intel Hex file was segmented into 17 LoRaWAN downlink frames with an average size of 46 bytes. Upon receiving the complete firmware update, the microcontroller employs self-programming techniques that restrict the update process to specific rows of the program memory, avoiding interruptions or reboots. The update process was successfully completed in 51.33 ms, resulting in a downtime of 16.88 ms. This method demonstrates improved energy efficiency compared to existing solutions while preserving the communication network's capacity, making it an adequate solution for remote devices in LoRaWAN networks.

2024

UAV-Assisted Navigation for Insect Traps in Olive Groves

Autores
Berger, GS; Bonzatto, L Jr; Pinto, MF; Júnior, AO; Mendes, J; da Silva, YMR; Pereira, AI; Valente, A; Lima, J;

Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2

Abstract
Unmanned Aerial Vehicles (UAVs) have emerged as valuable tools in precision agriculture due to their ability to provide timely and detailed information over large agricultural areas. In this sense, this work aims to evaluate the semi-autonomous navigation capacity of a multirotor UAV when applied in the field of precision agriculture. For this, a small aircraft is used to identify and track a set of fiducial markers (Ar Track Alvar) in an environment that simulates inspections of insect traps in olive groves. The purpose of this marker is to provide a visual reference point for the drone's navigation system. Once the Ar Track Alvar marker is detected, the robot will receive navigation information based on the marker's position to approach the specific trap. The experimental setup evaluated the computer vision algorithm applied to the UAV to make it recognize the Ar Track Alvar marker and then reach the trap efficiently. Experimental tests were conducted in a indoor and outdoor environment using DJI Tello. The results demonstrated the feasibility of applying these fiducial markers as a solution for the UAV's navigation in this proposed scenario.

  • 21
  • 23