Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Aurélio Campilho

2019

Preface

Autores
Karray, F; Campilho, A; Yu, A;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract

2019

Segmentation of gynaecological ultrasound images using different U-Net based approaches

Autores
Marques, S; Carvalho, C; Peixoto, C; Pignatelli, D; Beires, J; Silva, J; Campilho, A;

Publicação
2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS)

Abstract
Ovarian cancer is one of the most commonly occurring cancer in women. Transvaginal ultrasound is used as a screening test to detect the presence of tumors but, for specific types of ovarian tumors, malignancy can only be asserted through surgery. An automatic method to perform the detection and malignancy assessment of these tumours is thus necessary to prevent unnecessary oophorectomies. This work explores the U-Net's architecture and investigates the selection of different hyperparameters for the ovary and the ovarian follicles segmentation. The effect of applying different post-processing methods on beam-formed radio-frequency (BRF) data is also investigated. Results show that models trained only with BRF data have the worst performance. On the other hand, the combination of B-mode with BRF data performs better for ovary segmentation. As for the hyperparameter study, results show that the U-Net with 4 levels is the architecture with the worst performance. This shows that to achieve better performance in the segmentation of ovarian structures, it is important to select an architecture that takes into account the spatial context of the regions of interest. It is also possible to conclude that the method used to analyse BRF data should be designed to take advantage of the fine-resolution of BRF data.

2020

Automatic Lung Reference Model

Autores
Machado, M; Ferreira, CA; Pedrosa, J; Negrao, E; Rebelo, J; Leitao, P; Carvalho, AS; Rodrigues, MC; Ramos, I; Cunha, A; Campilho, A;

Publicação
XV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING - MEDICON 2019

Abstract
The lung cancer diagnosis is based on the search of lung nodules. Besides its characterization, it is also common to register the anatomical position of these findings. Even though computed-aided diagnosis systems tend to help in these tasks, there is still lacking a complete system that can qualitatively label the nodules in lung regions. In this way, this paper proposes an automatic lung reference model to facilitate the report of nodules between computed-aided diagnosis systems and the radiologist, and among radiologists. The model was applied to 115 computed tomography scans with manually and automatically segmented lobes, and the obtained sectors' variability was evaluated. As the sectors average variability within lobes is less or equal to 0.14, the model can be a good way to promote the report of lung nodules.

2020

Automatic Lung Nodule Detection Combined With Gaze Information Improves Radiologists' Screening Performance

Autores
Aresta, G; Ferreira, C; Pedrosa, J; Araujo, T; Rebelo, J; Negrao, E; Morgado, M; Alves, F; Cunha, A; Ramos, I; Campilho, A;

Publicação
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

Abstract
Early diagnosis of lung cancer via computed tomography can significantly reduce the morbidity and mortality rates associated with the pathology. However, searching lung nodules is a high complexity task, which affects the success of screening programs. Whilst computer-aided detection systems can be used as second observers, they may bias radiologists and introduce significant time overheads. With this in mind, this study assesses the potential of using gaze information for integrating automatic detection systems in the clinical practice. For that purpose, 4 radiologists were asked to annotate 20 scans from a public dataset while being monitored by an eye tracker device, and an automatic lung nodule detection system was developed. Our results show that radiologists follow a similar search routine and tend to have lower fixation periods in regions where finding errors occur. The overall detection sensitivity of the specialists was 0.67 +/- 0.07, whereas the system achieved 0.69. Combining the annotations of one radiologist with the automatic system significantly improves the detection performance to similar levels of two annotators. Filtering automatic detection candidates only for low fixation regions still significantly improves the detection sensitivity without increasing the number of false-positives.

2020

IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge

Autores
Porwal, P; Pachade, S; Kokare, M; Deshmukh, G; Son, J; Bae, W; Liu, LH; Wang, J; Liu, XH; Gao, LX; Wu, TB; Xiao, J; Wang, FY; Yin, BC; Wang, YZ; Danala, G; He, LS; Choi, YH; Lee, YC; Jung, SH; Li, ZY; Sui, XD; Wu, JY; Li, XL; Zhou, T; Toth, J; Bara, A; Kori, A; Chennamsetty, SS; Safwan, M; Alex, V; Lyu, XZ; Cheng, L; Chu, QH; Li, PC; Ji, X; Zhang, SY; Shen, YX; Dai, L; Saha, O; Sathish, R; Melo, T; Araujo, T; Harangi, B; Sheng, B; Fang, RG; Sheet, D; Hajdu, A; Zheng, YJ; Mendonca, AM; Zhang, ST; Campilho, A; Zheng, B; Shen, D; Giancardo, L; Quellec, G; Meriaudeau, F;

Publicação
MEDICAL IMAGE ANALYSIS

Abstract
Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is challenging due to the scarcity of medical professionals able to screen a growing global diabetic population at risk for DR. Computer-aided disease diagnosis in retinal image analysis could provide a sustainable approach for such large-scale screening effort. The recent scientific advances in computing capacity and machine learning approaches provide an avenue for biomedical scientists to reach this goal. Aiming to advance the state-of-the-art in automatic DR diagnosis, a grand challenge on "Diabetic Retinopathy - Segmentation and Grading" was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI-2018). In this paper, we report the set-up and results of this challenge that is primarily based on Indian Diabetic Retinopathy Image Dataset (IDRiD). There were three principal subchallenges: lesion segmentation, disease severity grading, and localization of retinal landmarks and segmentation. These multiple tasks in this challenge allow to test the generalizability of algorithms, and this is what makes it different from existing ones. It received a positive response from the scientific community with 148 submissions from 495 registrations effectively entered in this challenge. This paper outlines the challenge, its organization, the dataset used, evaluation methods and results of top-performing participating solutions. The top-performing approaches utilized a blend of clinical information, data augmentation, and an ensemble of models. These findings have the potential to enable new developments in retinal image analysis and image-based DR screening in particular.

2020

LNDetector: A Flexible Gaze Characterisation Collaborative Platform for Pulmonary Nodule Screening

Autores
Pedrosa, J; Aresta, G; Rebelo, J; Negrao, E; Ramos, I; Cunha, A; Campilho, A;

Publicação
XV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING - MEDICON 2019

Abstract
Lung cancer is the deadliest type of cancer worldwide and late detection is one of the major factors for the low survival rate of patients. Low dose computed tomography has been suggested as a potential early screening tool but manual screening is costly, time-consuming and prone to interobserver variability. This has fueled the development of automatic methods for the detection, segmentation and characterisation of pulmonary nodules but its application to the clinical routine is challenging. In this study, a platform for the development, deployment and testing of pulmonary nodule computer-aided strategies is presented: LNDetector. LNDetector integrates image exploration and nodule annotation tools as well as advanced nodule detection, segmentation and classification methods and gaze characterisation. Different processing modules can easily be implemented or replaced to test their efficiency in clinical environments and the use of gaze analysis allows for the development of collaborative strategies. The potential use of this platform is shown through a combination of visual search, gaze characterisation and automatic nodule detection tools for an efficient and collaborative computer-aided strategy for pulmonary nodule screening.

  • 18
  • 49