2006
Autores
Frazao, O; Falate, R; Fabris, JL; Santos, JL; Ferreira, LA; Araujo, FM;
Publicação
OPTICS LETTERS
Abstract
A new concept to measure rotation angles based on a fiber-optic modal Mach-Zehnder interferometer is demonstrated by using a nonadiabatic taper cascaded with a long-period fiber grating. Information about the magnitude of the rotation angle can be obtained from the measurement of the interference pattern visibility, and under certain conditions it is also possible to obtain the sign of the rotation angle from the induced phase variation in the fiber interferometer. (c) 2006 Optical Society of America.
2007
Autores
Frazao, O; Caldas, P; Araujo, FM; Ferreira, LA; Santos, JL;
Publicação
OPTICS LETTERS
Abstract
A novel in-fiber modal interferometer is presented that is based on a nonadiabatic biconical fused taper that couples light between the cladding and the core, combined with the Fresnel reflection at the fiber end. It is observed that the returned light from this fiber structure shows a channeled spectrum similar to that of a two-wave Michelson interferometer. The application of this device as a fiber optic flowmeter sensor is demonstrated. 2007 (c) Optical Society of America.
2007
Autores
Frazao, O; Viegas, J; Caldas, P; Santos, JL; Araujo, FM; Ferreira, LA; Farahi, F;
Publicação
OPTICS LETTERS
Abstract
A novel Mach-Zehnder interferometer based on a fiber multimode interference structure combined with a long-period fiber grating (LPG) is proposed. The multimode interference is achieved through the use of a MMF section spliced between two single-mode fibers, with a length adjusted to couple a fraction of light into the cladding modes. A LPG placed after the MMF couples light back into the fiber core, completing the Mach-Zehnder interferometer. This novel configuration was demonstrated as a bending sensor. (c) 2007 Optical Society ofAmerica.
2009
Autores
Frazao, O; Caldas, P; Santos, JL; Marques, PVS; Turck, C; Lougnot, DJ; Soppera, O;
Publicação
OPTICS LETTERS
Abstract
A micrometric Fabry-Perot refractometer based on an end-of-fiber polymer tip is proposed. The fiber tip, with a length of 36 mu m, was fabricated by self-guiding photopolymerization. The two-wave interferometric operation was achieved by combining the light waves generated at the interface between the single-mode fiber and the polymer tip, and at the fiber tip end (Fresnel reflection). The Fabry-Perot interferometer is coherence addressed and heterodyne interrogated, resulting into a liquid refractive index resolution of approximate to 7.5 x 10(-4). (C) 2009 Optical Society of America
2008
Autores
Silva, SFO; Frazao, O; Caldas, P; Santos, JL; Araujo, FM; Ferreira, LA;
Publicação
OPTICAL ENGINEERING
Abstract
A fiber optic sensor for liquid refractive index measurement based on a Fabry-Perot interferometer is described. The interferometer is achieved between the reflection of a short fiber Bragg grating and the Fresnel reflection from the cleaved fiber end. This fiber end is then in contact with the liquid sample to provide refractive index measurements. The sensor is characterized by immersing the fiber tip in distilled water with different concentrations of ethylene glycol. A linear relation of the interferometer fringe visibility with refractive index variation is observed, and a resolution of similar to 10(-3) is obtained. It is also shown that the sensor operation is independent of temperature effects, other than the one related to temperature-induced change of the liquid refractive index. (c) 2008 Society of Photo-Optical Instrumentation Engineers.
2012
Autores
Tafulo, PAR; Coelho, L; Jorge, PAS; Santos, JL; Schuster, K; Kobelke, J; Frazao, O;
Publicação
22ND INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, PTS 1-3
Abstract
In this work, a hybrid interferometer for simultaneous measurement of the partial pressures of O-2 and CO2 mixtures is reported. The sensing head consist in two different interferometers based on a Fabry-Perot cavity and a modal interference configuration. The intrinsic FP cavity was created by splicing a single mode fiber (SMF28) with a graded index fiber section that was then subjected to chemical etching creating a cavity. The second interferometer is based on a splice of a pure silica tube in series with the Fabry-Perot. Due to the design, different sensitivities are achieved for the pressure inducing refractive index changes of each gas. The rms deviations were found to be +/- 0.079 kPa and +/- 0.029 kPa for CO2 and O-2 partial pressure measurements, respectively.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.