Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Rui Lopes Campos

2023

Trajectory-Aware Rate Adaptation for Flying Networks

Autores
Queirós, R; Ruela, J; Fontes, H; Campos, R;

Publicação
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract

2022

An Algorithm for Placing and Allocating Communications Resources Based on Slicing-aware Flying Access and Backhaul Networks

Autores
Coelho, A; Rodrigues, J; Fontes, H; Campos, R; Ricardo, M;

Publicação

Abstract
<p>Flying networks, composed of Unmanned Aerial Vehicles (UAVs) acting as mobile Base Stations and Access Points, have emerged to provide on-demand wireless connectivity, especially due to their positioning capability. Still, existing solutions are focused on improving aggregate network performance using a best-effort approach. This may compromise the use of multiple services with different performance requirements. Network slicing has emerged in 5G networks to address the problem, allowing to meet different Quality of Service (QoS) levels on top of a shared physical network infrastructure. However, Mobile Network Operators typically use fixed Base Stations to satisfy the requirements of different network slices, which may not be feasible due to limited resources and the dynamism of some scenarios.</p> <p>We propose an algorithm for enabling the joint placement and allocation of communications resources in Slicing-aware Flying Access and Backhaul networks – SurFABle. SurFABle allows the computation of the amount of communications resources needed, namely the number of UAVs acting as Flying Access Points and Flying Gateways, and their placement. The performance evaluation carried out by means of ns-3 simulations and an experimental testbed shows that SurFABle makes it possible to meet heterogeneous QoS levels of multiple network slices using the minimum number of UAVs.</p>

2023

DURIUS: A Multimodal Underwater Communications Approach for Higher Performance and Lower Energy Consumption

Autores
Loureiro, JP; Teixeira, FB; Campos, R;

Publicação
2023 IEEE 9TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT

Abstract
The exploration of the ocean has got an increasing interest, including activities such as offshore wind farms and deep-sea mining. However, the ocean environment and the high cost of operations, namely for manned missions, have led to the development of Autonomous Underwater Vehicles (AUVs) and other sensing platforms. AUVs play a vital role in these environments, relying on communications systems to operate and exchange sensor data. Yet, reliable and energy-efficient broad-band wireless communications underwater remain an unsolved challenge, despite the recent advances in the field. We present a novel multimodal approach, named DURIUS, that considers the movement of the AUV to convey the sensor data and selects the most suitable underwater wireless communications technology - acoustic, optical or radio - according to the underwater context, targeting maximum performance and minimum energy consumption. Our analytical results show that DURIUS increases data throughput and reduces energy consumption when compared with the state of the art approaches.

2024

Aquacom: A Multimodal Underwater Wireless Communications Manager for Enhanced Performance

Autores
Moreira, G; Loureiro, JP; Teixeira, FB; Campos, R;

Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
Underwater wireless communications play a significant role in the Blue Economy, supporting the operations of sensing platforms like Autonomous Surface Vehicles (ASVs) and Autonomous Underwater Vehicles (AUVs). These platforms require reliable and fast communications to transmit the extensive data gathered without surfacing. Yet, the ocean poses challenges to signal propagation, restricting communications to high bitrate at short ranges via optical and RF, or low bitrate at long distances using acoustic communications. This paper introduces Aquacom, a multimodal manager for underwater communications that integrates acoustic, RF, and optical communnications, ensuring seamless handover between technologies and link aggregation to enhance network performance. Upon validation in freshwater tank lab tests, Aquacom demonstrated the capability for switching interfaces without data loss and effective link aggregation through the simultaneous use of multiple wireless interfaces.

2023

RateRL: A Framework for Developing RL-Based Rate Adaptation Algorithms in ns-3

Autores
Queirós, R; Ferreira, L; Fontes, H; Campos, R;

Publicação
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract
The increasing complexity of recent Wi-Fi amendments is making the use of traditional algorithms and heuristics unfeasible to address the Rate Adaptation (RA) problem. This is due to the large combination of configuration parameters along with the high variability of the wireless channel. Recently, several works have proposed the usage of Reinforcement Learning (RL) techniques to address the problem. However, the proposed solutions lack sufficient technical explanation. Also, the lack of standard frameworks enabling the reproducibility of results and the limited availability of source code, makes the fair comparison with state of the art approaches a challenge. This paper proposes a framework, named RateRL, that integrates state of the art libraries with the well-known Network Simulator 3 (ns-3) to enable the implementation and evaluation of RL-based RA algorithms. To the best of our knowledge, RateRL is the first tool available to assist researchers during the implementation, validation and evaluation phases of RL-based RA algorithms and enable the fair comparison between competing algorithms.

2022

Joint Energy and Performance Aware Relay Positioning in Flying Networks

Autores
Rodrigues, H; Coelho, A; Ricardo, M; Campos, R;

Publicação

Abstract
<div>Unmanned Aerial Vehicles (UAVs) have emerged as suitable platforms for transporting and positioning communications nodes on demand, including Wi-Fi Access Points and cellular Base Stations. This paved the way for the deployment of flying networks capable of temporarily providing wireless connectivity and reinforcing coverage and capacity of existing networks. Several solutions have been proposed for the positioning of UAVs acting as Flying Access Points (FAPs). Yet, the positioning of Flying Communications Relays (FCRs) in charge of forwarding the traffic to/from the Internet has not received equal attention. In addition, state of the art works are focused on optimizing both the flying network performance and the energy-efficiency from the communications point of view, leaving aside a relevant component: the energy spent for the UAV propulsion.</div><div>We propose the Energy and Performance Aware relay Positioning (EPAP) algorithm. EPAP defines target performance-aware Signal-to-Noise Ratio (SNR) values for the wireless links established between the FCR UAV and the FAPs and, based on that, computes the trajectory to be completed by the FCR UAV so that the energy spent for the UAV propulsion is minimized. EPAP was evaluated in terms of both the flying network performance and the FCR UAV endurance, considering multiple networking scenarios. Simulation results show gains up to 25% in the FCR UAV endurance, while not compromising the Quality of Service offered by the flying network.</div>

  • 15
  • 16