2015
Autores
Fontes, H; Campos, R; Ricardo, M;
Publicação
Proceedings of the 8th International Conference on Simulation Tools and Techniques, Athens, Greece, August 24-26, 2015
Abstract
A common problem in networking research and development is the duplicate effort of writing simulation and implementation code. This duplication can be avoided through the use of fast-prototyping methodologies, which enable reusing simulation code in real prototyping and in production environments. Although this functionality is already available by using ns-3 emulation, there are still limitations regarding the support of real network interfaces and easy configuration of the network settings, such as IP and MAC addresses. In this paper we propose an improved version of the ns-3 emulation component by introducing new functionalities that address these limitations. The new functionalities include the support of new types of real network interfaces and the easier integration of emulation nodes with existing networks by means of a new auto-configuration mechanism for ns-3 nodes. Experimental results obtained in a laboratorial testbed and in a real vehicular network testbed demonstrate the new functionalities proper operation, and their backwards compatibility with previously coded ns-3 scenarios. Copyright © 2015 ICST.
2017
Autores
Fontes, H; Campos, R; Ricardo, M;
Publicação
Proceedings of the Workshop on ns-3, Porto, Portugal, June 13 - 14, 2017
Abstract
A common problem in mobile networking research and development is the cost related to deploying and running real-world mobile testbeds. Due to cost and operational constraints, these testbeds usually run for short time periods but generate very unique and relevant results that are hard to reproduce. We propose the use of ns-3 as a solution to successfully reproduce real-world mobile testbed experiments. This is accomplished by feeding ns-3 with real testbed traces including node positions and radio link quality only. In order to validate our approach, the network throughput between a fixed Base Station and a Unmanned Aerial Vehicle (UAV) was measured in a real-world testbed. The experimental results were compared to the network throughput achieved using the ns-3 trace-based simulation and a plain ns-3 simulation. The obtained results show the high accuracy of the trace-based simulation, thus validating our approach. © 2017 ACM.
2017
Autores
Ferreira, B; Coelho, A; Lopes, M; Matos, A; Goncalves, C; Kandasamy, S; Campos, R; Barbosa, J;
Publicação
OCEANS 2017 - ABERDEEN
Abstract
FLEXUS unmanned surface vehicle was designed in the context of the Internet of Moving Things. This small catamaran weights less than 15kg and is less than 1m long, making it a very convenient vehicle with reduced logistics needs for operations in real outdoor environments. The present paper describes the resulting system both in terms of design and performances. Based on the requirements for this project, the subsystems composing the vehicle are described. Results obtained from experiments conducted in outdoor conditions have successfully validated this design and are presented in this paper.
2016
Autores
Silva, E; Martins, A; Dias, A; Matos, A; Olivier, A; Pinho, C; de Sa, FA; Ferreira, H; Silva, H; Alves, JC; Almeida, JM; Pessoa, L; Ricardo, M; Cruz, N; Dias, N; Monica, P; Jorge, P; Campos, R;
Publicação
OCEANS 2016 MTS/IEEE MONTEREY
Abstract
INESC TEC is strongly committed to become a center of excellence in maritime technology and, in particular, deep sea technology. The STRONGMAR project aims at creating solid and productive links in the global field of marine science and technology between INESC TEC and established leading research European institutions, capable of enhancing the scientific and technological capacity of INESC TEC and linked institutions, helping raising its staff's research profile and its recognition as a European maritime research center of excellence. The STRONGMAR project seeks complementarity to the TEC4SEA research infrastructure: on the one hand, TEC4SEA promotes the establishment of a unique infrastructure of research and technological development, and on the other, the STRONGMAR project intends to develop the scientific expertise of the research team of INESC TEC.
2014
Autores
Lopes, MJ; Teixeira, F; Mamede, JB; Campos, R;
Publicação
2014 UNDERWATER COMMUNICATIONS AND NETWORKING (UCOMMS)
Abstract
Current maritime communications rely on expensive or proprietary technology, such as satellite, WiMAX, and narrowband HF radios. Broadband communications are limited to the near shore 3G/4G coverage provided by mobile operators. The usage of unlicensed and IEEE 802.11 networks may provide ship owners a low-cost broadband access to the Internet offshore, enabling real-time navigation applications and voice/video communications, while increasing safety onboard. Also, they can support underwater communications by acting as a bridge between shore and devices operating underwater. In this paper we present a performance evaluation of IEEE 802.11n networks in the 5.8 GHz band in a maritime environment. A point-to-point link was established between a fishing ship and shore. From our tests, communication links up to 7 km at 1 Mbit/s are possible, showing the advantage of using long range IEEE 802.11 links for broadband maritime communications.
2016
Autores
Teixeira, FB; Oliveira, T; Lopes, M; Ruela, J; Campos, R; Ricardo, M;
Publicação
2016 IEEE THIRD UNDERWATER COMMUNICATIONS AND NETWORKING CONFERENCE (UCOMMS)
Abstract
Autonomous Underwater Vehicles and Remotely Operated Vehicles are useful in industries such as offshore Oil and Gas, deep sea mining, and aquaculture, where inspection missions are frequent. While underwater communications are mainly done using acoustic links, retrieving data from these devices to shore is still an open issue, especially when we consider the high cost of satellite communications. In this paper, using ns-3 simulations, we evaluate the ability of the communications solution being developed in the BLUECOM+ project to enable real-time marine data transfer at remote ocean areas. Through the usage of tethered balloons, TV white spaces frequencies, and multi-hop communications, the BLUECOM+ solution enables cost-effective, broadband connectivity to the Internet at remote ocean areas, using standard access technologies such as GPRS/UMTS/LTE and Wi-Fi. Simulation results show an expected range exceeding 100 km from shore using only two nodes at sea, with bitrates over 1 Mbit/s.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.