2024
Autores
Ramalho F.R.; Moreno T.; Soares A.L.; Almeida A.H.; Oliveira M.;
Publicação
Lecture Notes in Mechanical Engineering
Abstract
European industrial value chains and manufacturing companies have recently faced critical challenges imposed by disruptive events related to the pandemic and associated social/political problems. Many European manufacturing industries have already recognized the importance of digitalization to increase manufacturing systems’ autonomy and, consequently, become more resilient to adapt to new contexts and environments. Augmented reality (AR) is one of the emerging technologies associated with the European Industry 5.0 initiative, responsible for increasing human-machine interactions, promoting resilience through decision-making, and flexibility to deal with variability and unexpected events. However, the application and benefits of AR in increasing manufacturing resilience are still poorly perceived by academia and by European Manufacturing companies. Thus, the purpose of this paper is to contribute to the state of the art by relating the application of AR with current industrial processes towards manufacturing systems resilience. In order to cope with this objective, the industrial resilience and augmented human worker concepts are first presented. Then, through an exploratory study involving different manufacturing companies, a list of relevant disruptive events is compiled, as well as a proposal with specific ideas and functionalities on how AR can be applied to address them. In conclusion, this research work highlights the importance of AR in coping mainly with disruptive events related to Human Workforce Management and Market/Sales Management. The AR application ideas shared a common thread of availability and delivery of information to the worker at the right time, place, and format, acting on the standardization and flexibility of the work to support manufacturing resilience.
2024
Autores
Costa, L; Almeida, A; Reis, L;
Publicação
5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023
Abstract
In today's volatile, uncertain, and complex business environments, manufacturing companies must not only adapt to market demands but also minimize the time between problem occurrence and resolution. The implementation of lean manufacturing systems has been crucial in this regard. However, traditional approaches have shown notable inefficiencies that can be effectively addressed through digitalization. By embracing digital solutions, manufacturing companies can ensure efficient continuous improvement, driving performance to higher levels. This study aims to find a digital solution for a specific company that faces daily challenges associated with low visibility into production. An investigation revealed that the Lean tools used by the company were outdated, directly affecting the generated information and consequently, decision-making. The integration of a Manufacturing Execution System into the factory's dynamics was the solution found. In this context, a step-by-step methodology is proposed to guide the implementation. As a result, a prototype of the system was designed. The validation of the system by end-users demonstrates the success of the proposed methodology.
2024
Autores
Carvalho, T; Simoes, AC; Teles, V; Almeida, AH;
Publicação
EUROPEAN JOURNAL OF ENGINEERING EDUCATION
Abstract
Previous studies show that digital transition brings several benefits and challenges for companies. Among those challenges, particularly for Small and Medium-sized Enterprises (SMEs), the main one is increased capacitation, from technical roles to management. Considering this, the main objective of this study is to identify the training needs and the ecosystem support in the face of the digital transition for Portuguese manufacturing SMEs.Semi-structured interviews were conducted with industry experts and company professionals in the automotive and textile sectors. It was concluded that all workers, from technical roles to middle and top management, need more digital capabilities and would benefit from training programmes. The most desired areas for training are data science, virtualisation skills, quality assurance, technical training, and soft skills. The preferred format is physical (or hybrid at most) during working hours and with theoretical training before on-the-job learning. Both industrial companies and experts believe in the value of involving external entities in the training of employees, with the three most referred entities being technology and interface centres, universities, and business associations.
2024
Autores
Azevedo, A; Almeida, AH;
Publicação
2024 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE, EDUCON 2024
Abstract
In the Fourth Industrial Revolution era, commonly known as Industry 4.0, the manufacturing industry is undergoing a profound transformation driven by the convergence of technological advancements. Industry 4.0 technologies are revolutionising how products are manufactured, from design to production to delivery. These technologies, such as collaborative robotics, digital twins, IoT, and data analytics, enable manufacturers to improve efficiency, productivity, and quality. As Industry 4.0 continues to evolve, the demand for skilled engineers who can effectively design, implement, and manage these sophisticated systems is growing rapidly. Future mechanical engineers must be prepared to navigate this complex and data-driven manufacturing landscape. To address this need, the Faculty of Engineering at the University of Porto developed a new course titled Smart Factories, specifically designed to equip master's students with the knowledge and skills necessary to thrive in the factories of the future. This course utilises an innovative, active experimental learning methodology with industry collaborations and a comprehensive curriculum to foster the development of the multidisciplinary skills necessary to excel in this rapidly evolving field. Through this comprehensive and innovative approach, the Smart Factories course aims to prepare future mechanical engineers to become leaders in smart manufacturing, driving innovation and shaping future factories.
2024
Autores
Ghanbarifard, R; Almeida, AH; Luz, AG; Azevedo, A;
Publicação
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: MANUFACTURING INNOVATION AND PREPAREDNESS FOR THE CHANGING WORLD ORDER, FAIM 2024, VOL 1
Abstract
This paper advocates for Digital Twin (DT) technology as a pivotal solution to address the complexities of Complex Operations Environments (COEs). Recognizing the need for a thorough understanding of COEs and their DTs, a methodology is introduced to bridge existing gaps. Given the lack of a universal definition, the approach leverages the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Latent Dirichlet Allocation (LDA) to extract insights, facilitating the development of a comprehensive definition for COE and DT. The methodology integrates Ontology and Systems Modelling Language (SysML) to provide a semantic and conceptual model of COE and DT. Ontology enriches the semantic understanding, exploring existence and entity relationships, while SysML ensures clear and concise communication through standardized graphical representation. This paper aims to present a methodology to achieve a precise understanding of COEs and their corresponding DTs, providing a robust foundation for addressing operational complexities in dynamic environments.
2024
Autores
Soares, Â; Ferreira, AR; Lopes, MP;
Publicação
Lecture Notes in Mechanical Engineering
Abstract
This paper studies a real world dedicated parallel machine scheduling problem with sequence dependent setups, different machine release dates and additional resources (PMSR). To solve this problem, two previously proposed models have been adapted and a novel objective function, the minimisation of the sum of the machine completion times, is proposed to reflect the real conditions of the manufacturing environment that motivates this work. One model follows the strip-packing approach and the other is time-indexed. The solutions obtained show that the new objective function provides a compact production schedule that allows the simultaneous minimisation of machine idle times and setup times. In conclusion, this study provides valuable insights into the effectiveness of different models for solving PMSR problems in real-world contexts and gives directions for future research in this area using complementary approaches such as matheuristics. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.