2021
Autores
Lourenço, J; Teixeira, J; Carvalho, P; Pádua, L; Adão, T; Peres, E; Sousa, JJ;
Publicação
IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021, Brussels, Belgium, July 11-16, 2021
Abstract
The development and implementation of a virtual environment that aims to support farmers in managing their land and crops in a more sustainable way is presented in this paper. It allows both textual and 3D visualization of crop-related biophysical parameters, such as height, volume and length. Moreover, the latter can be dynamically altered according to various criteria. A case study was conducted in a Portuguese vineyard. The application was developed using the Unity software, while a real agricultural data feed was provided by mySense interface. The virtual environment can be seen as a valuable decision support system to assist farmers.
2021
Autores
Sousa, JJ; Liu, G; Fan, JH; Perski, Z; Steger, S; Bai, SB; Wei, LH; Salvi, S; Wang, Q; Tu, JA; Tong, LQ; Mayrhofer, P; Sonnenschein, R; Liu, SJ; Mao, YC; Tolomei, C; Bignami, C; Atzori, S; Pezzo, G; Wu, LX; Yan, SY; Peres, E;
Publicação
REMOTE SENSING
Abstract
Geological disasters are responsible for the loss of human lives and for significant economic and financial damage every year. Considering that these disasters may occur anywhere-both in remote and/or in highly populated areas-and anytime, continuously monitoring areas known to be more prone to geohazards can help to determine preventive or alert actions to safeguard human life, property and businesses. Remote sensing technology-especially satellite-based-can be of help due to its high spatial and temporal coverage. Indeed, data acquired from the most recent satellite missions is considered suitable for a detailed reconstruction of past events but also to continuously monitor sensitive areas on the lookout for potential geohazards. This work aims to apply different techniques and methods for extensive exploitation and analysis of remote sensing data, with special emphasis given to landslide hazard, risk management and disaster prevention. Multi-temporal SAR (Synthetic Aperture Radar) interferometry, SAR tomography, high-resolution image matching and data modelling are used to map out landslides and other geohazards and to also monitor possible hazardous geological activity, addressing different study areas: (i) surface deformation of mountain slopes and glaciers; (ii) land surface displacement; and (iii) subsidence, landslides and ground fissure. Results from both the processing and analysis of a dataset of earth observation (EO) multi-source data support the conclusion that geohazards can be identified, studied and monitored in an effective way using new techniques applied to multi-source EO data. As future work, the aim is threefold: extend this study to sensitive areas located in different countries; monitor structures that have strategic, cultural and/or economical relevance; and resort to artificial intelligence (AI) techniques to be able to analyse the huge amount of data generated by satellite missions and extract useful information in due course.
2021
Autores
Silva, B; Sousa, JJ; Lazecky, M; Cunha, A;
Publicação
Procedia Computer Science
Abstract
The success achieved by using SAR data in the study of the Earth led to a firm commitment from space agencies to develop more and better space-borne SAR sensors. This involvement of the space agencies makes us believe that it is possible to increase the potential of SAR interferometry (InSAR) to near real-time monitoring. Among this ever-increasing number of sensors, the ESA's Sentinel-1 (C-band) mission stands out and appears to be disruptive. This mission is acquiring vast volumes of data making current analyzing approaches inviable. This amount of data can no longer be analyzed and studied using classic methods raising the need to use and create new techniques. We believe that Machine Learning techniques can be the solution to overcome this issue since they allow to train Deep Learning models to automate human processes for a vast volume of data. In this paper, we use deep learning models to automatically find and locate deformation areas in InSAR interferograms without atmospheric correction. We train three state-of-the-art classification models for detection deformation areas, achieving an AUC of 0.864 for the best model (VGG19 for wrapped interferograms). Additionally, we use the same models as encoders to train U-net models, achieving a Dice score of 0.54 for InceptionV3. It is necessary more data to achieve better results in segmentation.
2021
Autores
Carneiro, GS; Ferreira, A; Morais, R; Sousa, JJ; Cunha, A;
Publicação
5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020
Abstract
With an increasing interest in the digitization effort of ancient manuscripts, ancient character recognition becomes one of the most important areas in the automated document image analysis. In this regard, we propose a Convolutional Neural Network (CNN)-based classifier to recognize the ancient Sundanese characters obtained from a digital collection of Southeast Asian palm leaf manuscripts. In this work, we utilize two different preprocessing techniques for the dataset. The first technique involves the use of geometric transformations, noise background addition, and brightness adjustment to augment the imbalanced samples to be fed into the classifier. The second technique makes use of the Otsu's threshold method to binarize the characters and only uses the usual geometric transformations for the data augmentation. The proposed network with different data augmentation processes is trained on the training set and tested on the testing set. Image binarization from the second technique can outperform the performance of the CNN-based classifier upon the first technique by achieving a testing accuracy of 97.74%. (C) 2021 The Authors. Published by Elsevier B.V.
2021
Autores
Silva, DM; Bernardin, T; Fanton, K; Nepaul, R; Pádua, L; Sousa, JJ; Cunha, A;
Publicação
Procedia Computer Science
Abstract
The technological revolution that we have been witnessing recently has allowed components miniaturization and made electronic components accessible. Hyperspectral sensors benefited from these advances and could be mounted on unmanned aerial vehicles, which was unthinkable until recently. This fact significantly increased the applications of hyperspectral data, namely in agriculture, especially in the detection of diseases at an early stage. The vineyard is one of the agricultural sectors that has the most to gain from the use of this type of data, both by the economic value and by the number of diseases the plants are exposed to. The Flavescense dorée is a disease that attacks vineyards and may conduct to a significant loss. Nowadays, the detection of this disease is based on the visual identification of symptoms performed by experts who cover the entire area. However, this work remains tedious and relies only on the human eye, which is a problem since sometimes healthy plants are torn out, while diseased ones are left. If the experts think they have found symptoms, they take samples to send to the laboratory for further analysis. If the test is positive, then the whole vine is uprooted, to limit the spread of the disease. In this context, the use of hyperspectral data will allow the development of new disease detection methods. However, it will be necessary to reduce the volume of data used to make them usable by conventional resources. Fortunately, the advent of machine learning techniques empowered the development of systems that allow better decisions to be made, and consequently save time and money. In this article, a machine learning approach, which is based on an Autoencoder to automatically detect wine disease, is proposed.
2021
Autores
Carneiro, GA; Magalhães, R; Neto, A; Sousa, JJ; Cunha, A;
Publicação
Procedia Computer Science
Abstract
Wine is the most important product from the Douro Region, in Portugal. Ampelographs are disappearing, and farmers need new solutions to identify grapevine varieties to ensure high-quality standards. The development of methodology capable of automatically identify grapevine are in need. In the scenario, deep learning based methods are emerging as the state-of-art in grapevines classification tasks. In previous work, we verify the deep learning models would benefit from focus classification patches in leaves images areas. Deep learning segmentation methods can be used to find grapevine leaves areas. This paper presents a methodology to segment grapevines images automatically based on the U-net model. A private dataset was used, composed of 733 grapevines images frames extracted from 236 videos collected in a natural environment. The trained model obtained a Dice of 95.6% and an Intersection over Union of 91.6%, results that fully satisfy the need of localise grapevine leaves.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.