Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2023

A Neural Network Approach in WSN Real-Time Monitoring System to Measure Indoor Air Quality

Autores
Brito, T; Lima, J; Biondo, E; Nakano, A; Pereira, I;

Publicação
3rd International Mobile, Intelligent, and Ubiquitous Computing Conference, MIUCC 2023

Abstract
Indoor Air Quality (IAQ) pertains to the air quality within a specific space and is directly linked to the well-being and comfort of its occupants. In line with this objective, this research presents a real-time system dedicated to monitoring and predicting IAQ, encompassing both thermal comfort and gas concentration. The system initiates with a data acquisition, wherein a set of sensors captures environmental parameters and transmits this data for storage in a database. The measured parameters are analyzed by a neural network algorithm that predicts anomalies based on historical data. The neural network model generated predictions from 75.9% to 98.1% (depending on the parameter) of precision during regular situations. After that, a test with smoke in the same place was done to validate the model, and the results showed it could detect anomalies. Finally, prediction data are stored in a new database and displayed on a dashboard for monitoring in real-time measured and prediction data. © 2023 IEEE.

2023

Impact of Organizational Factors on Accident Prediction in the Retail Sector

Autores
Sena, I; Mendes, J; Fernandes, FP; Pacheco, MF; Vaz, CB; Lima, J; Braga, AC; Novais, P; Pereira, AI;

Publicação
Computational Science and Its Applications - ICCSA 2023 Workshops - Athens, Greece, July 3-6, 2023, Proceedings, Part II

Abstract
Although different actions to prevent accidents at work have been implemented in companies, the number of accidents at work continues to be a problem for companies and society. In this way, companies have explored alternative solutions that have improved other business factors, such as predictive analysis, an approach that is relatively new when applied to occupational safety. Nevertheless, most reviewed studies focus on the accident dataset, i.e., the casualty’s characteristics, the accidents’ details, and the resulting consequences. This study aims to predict the occurrence of accidents in the following month through different classification algorithms of Machine Learning, namely, Decision Tree, Random Forest, Gradient Boost Model, K-nearest Neighbor, and Naive Bayes, using only organizational information, such as demographic data, absenteeism rates, action plans, and preventive safety actions. Several forecasting models were developed to achieve the best performance and accuracy of the models, based on algorithms with and without the original datasets, balanced for the minority class and balanced considering the majority class. It was concluded that only with some organizational information about the company can it predict the occurrence of accidents in the month ahead. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

Execution Time Experiments to Solve Capacitated Vehicle Routing Problem

Autores
Silva, AS; Lima, J; Pereira, A; Silva, AMT; Gomes, HT;

Publicação
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2023 WORKSHOPS, PART VIII

Abstract
Studies dealing with route optimization have received considerable attention in recent years due to the increased demand for transportation services. For decades, scholars have developed robust algorithms designed to solve various Vehicle Routing Problems (VRP). In most cases, the focus is to present an algorithm that can overcome the shortest distances reported in other studies. On the other hand, execution time is also an important parameter that may limit the feasibility of the utilization in real scenarios for some applications. For this reason, in this work, a Guided Local Search (GLS) metaheuristic available in open-source OR-Tools will be tested to solve the Augerat instances of Capacitated Vehicle Routing Problems (CVRP). The stop criterion used here is the execution time, going from 1 s (standard) to 10 s, with a last run of 360 s. The numerical results demonstrate that increasing the execution time returns significant improvement in distance optimization. However, the optimization found considering high execution times can be expensive in terms of time, and not feasible for situations demanding faster algorithms, such as in Dynamic Vehicle Routing Problems (DVRP). Nonetheless, the GLS has proven to be a versatile algorithm for use where distance optimization is the main priority (high execution times) and in cases where faster algorithms are required (low execution times).

2023

Data Acquisition System for a Wearable-Based Fall Prevention

Autores
Kaizer, R; Sestrem, L; Franco, T; Gonçalves, J; Teixeira, J; Lima, J; Carvalho, J; Leitão, P;

Publicação
Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies

Abstract

2023

Application of machine learning in dementia diagnosis: A systematic literature review

Autores
Kantayeva, G; Lima, J; Pereira, AI;

Publicação
HELIYON

Abstract
According to the World Health Organization forecast, over 55 million people worldwide have dementia, and about 10 million new cases are detected yearly. Early diagnosis is essential for patients to plan for the future and deal with the disease. Machine Learning algorithms allow us to solve the problems associated with early disease detection. This work attempts to identify the current relevance of the application of machine learning in dementia prediction in the scientific world and suggests open fields for future research. The literature review was conducted by combining bibliometric and content analysis of articles originating in a period of 20 years in the Scopus database. Twenty-seven thousand five hundred twenty papers were identified firstly, of which a limited number focused on machine learning in dementia diagnosis. After the exclusion process, 202 were selected, and 25 were chosen for analysis. The recent increasing interest in the past five years in the theme of machine learning in dementia shows that it is a relevant field for research with still open questions. The methods used to identify dementia or what features are used to identify or predict this disease are explored in this study. The literature review revealed that most studies used magnetic resonance imaging (MRI) and its types as the main feature, accompanied by demographic data such as age, gender, and the mini-mental state examination score (MMSE). Data are usually acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Classification of Alzheimer's disease is more prevalent than prediction of Mild Cognitive Impairment (MCI) or their combination. The authors preferred machine learning algorithms such as SVM, Ensemble methods, and CNN because of their excellent performance and results in previous studies. However, most use not one machine-learning technique but a combination of techniques. Despite achieving good results in the studies considered, there are new concepts for future investigation declared by the authors and suggestions for improvements by employing promising methods with potentially significant results.

2023

Execution time as a key parameter in the waste collection problem

Autores
Silva, S; Pereira, I; Lima, J; Silva, MT; Gomes, T;

Publicação
Iberian Conference on Information Systems and Technologies, CISTI

Abstract
Proper waste management has been recognized as a tool for the green transition towards a more sustainable economy. For instance, most studies dealing with municipal solid wastes in the literature focus on environmental aspects, proposing new routes for recycling, composting and landfilling. However, there are other aspects to be improved in the systems that deal with municipal solid waste, especially in the transportation sector. Scholars have been exploring alternatives to improve the performance in waste collection tasks since the late 50s, for example, considering the waste collection problem as static. The transition from a static approach to a dynamic is necessary to increase the feasibility of the solution, requiring faster algorithms. Here we explore the improvement in the performance of the guided local search metaheuristic available in OR-Tools upon different execution times lower than 10 seconds to solve the capacitated waste collection problem. We show that increasing the execution time from 1 to 10 seconds can overcome savings of up to 1.5 km in the proposed system. Considering application in dynamic scenarios, the 9 s increase in execution time (from 1 to 10 s) would not hinder the algorithm's feasibility. Additionally, the assessment of the relation between performance in different execution times with the dataset's tightness revealed a correlation to be explored in more detail in future studies. The work done here is the first step towards a shift of paradigm from static scenarios in waste collection to dynamic route planning, with the execution time established according to the conclusions achieved in this study. © 2023 ITMA.

  • 39
  • 356