Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2023

Human-Aware Collaborative Robots in the Wild: Coping with Uncertainty in Activity Recognition

Autores
Yalcinkaya, B; Couceiro, MS; Soares, SP; Valente, A;

Publicação
SENSORS

Abstract
This study presents a novel approach to cope with the human behaviour uncertainty during Human-Robot Collaboration (HRC) in dynamic and unstructured environments, such as agriculture, forestry, and construction. These challenging tasks, which often require excessive time, labour and are hazardous for humans, provide ample room for improvement through collaboration with robots. However, the integration of humans in-the-loop raises open challenges due to the uncertainty that comes with the ambiguous nature of human behaviour. Such uncertainty makes it difficult to represent high-level human behaviour based on low-level sensory input data. The proposed Fuzzy State-Long Short-Term Memory (FS-LSTM) approach addresses this challenge by fuzzifying ambiguous sensory data and developing a combined activity recognition and sequence modelling system using state machines and the LSTM deep learning method. The evaluation process compares the traditional LSTM approach with raw sensory data inputs, a Fuzzy-LSTM approach with fuzzified inputs, and the proposed FS-LSTM approach. The results show that the use of fuzzified inputs significantly improves accuracy compared to traditional LSTM, and, while the fuzzy state machine approach provides similar results than the fuzzy one, it offers the added benefits of ensuring feasible transitions between activities with improved computational efficiency.

2023

Construction of a Virtual Environment to Measure the Evolution of Kendo Athletes

Autores
de Araújo, FMA; Ferreira, AKC; Dantas, MA; Pimentel, HIC; Leal, PRA; de Carvalho, SLB; Fonseca Ferreira, NM; Valente, A; Soares, SFSP;

Publicação
Proceedings of the 11th International Conference on Sport Sciences Research and Technology Support, icSPORTS 2023, Rome, Italy, November 16-17, 2023.

Abstract
The use of technology applied in sports comes each year becoming a great tool to help athletes train. Moreover, the post-pandemic world is undergoing dramatic changes in the way of thinking and acting, with new ways of exercising emerging, but without leaving home. Thus this paper describes the development of a platform for training, focusing on Kendo practitioners (Japanese fencing) using virtual reality tools to allow athletes and training the distance. Through the use of a HMD (Head Mounted Device), kendokas will be able to practice blows and improve their reflex by a gamified experience in a virtual environment. © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

2023

Application of Bio-Inspired Optimization Techniques for Wind Power Forecasting

Autores
Ferreira, J; Puga, R; Boaventura, J; Abtahi, A; Santos, S;

Publicação
International Journal of Computer Information Systems and Industrial Management Applications

Abstract
As the need for replacing fossil and other non-renewable energy sources with renewables becomes more critical and urgent, wind energy appears to be among the two or three best choices for the short and medium time frames. The dominance of wind energy as the first choice in many regions, leads to an increasing impact of wind power quality on the overall grid. Wind energy’s inherent intermittent nature, both in intensity and longevity, could be an impediment to its adoption unless utility operators have the tools to anticipate the impact and integrate wind resources seamlessly by increasing or reducing its contribution to the overall capacity of the grid. The wind forecasting science is well established and has been the subject of serious study in multiple fields such as fluid dynamics, statistical analysis and numerical simulation and modeling. With the renewed interest and dependence on wind as a major energy source, these efforts have increased exponentially. One of the areas that shows great promise in developing improved forecasting tools, is the category of “Biological Inspired Optimization Techniques. The study presented in this paper is the result of a study to survey and assess an array of forecasting models and algorithms. © MIR Labs, www.mirlabs.net/ijcisim/index.html

2023

A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems

Autores
Nunes, C; Nunes, R; Pires, EJS; Barroso, J; Reis, A;

Publicação
APPLIED SCIENCES-BASEL

Abstract
The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna's functionality, a product manufactured by this organization. In addition, the storage of information from the testing process allows the data manipulation through automated machine learning algorithms in search of a beneficial contribution. Studies in this area (automatic learning/machine learning) lead to the search and development of tools designed with objectives such as preventing anomalies in the production line, predictive maintenance, product quality assurance, forecast demand, forecasting safety problems, increasing resources, proactive maintenance, resource scalability, reduced production time, and anomaly detection, isolation, and correction. Once applied to the manufacturing environment, these advantages make the EOL system more productive, reliable, and less time-consuming. This way, a tool is proposed that allows the visualization and previous detection of trends associated with faults in the antenna testing system. Furthermore, it focuses on predicting failures at Continental's EOL.

2023

Offshore Wind Farm Layout Optimisation Considering Wake Effect and Power Losses

Autores
Baptista, J; Jesus, B; Cerveira, A; Pires, EJS;

Publicação
SUSTAINABILITY

Abstract
The last two decades have witnessed a new paradigm in terms of electrical energy production. The production of electricity from renewable sources has come to play a leading role, thus allowing us not only to face the global increase in energy consumption, but also to achieve the objectives of decarbonising the economies of several countries. In this scenario, where onshore wind energy is practically exhausted, several countries are betting on constructing offshore wind farms. Since all the costs involved are higher when compared to onshore, optimising the efficiency of this type of infrastructure as much as possible is essential. The main aim of this paper was to develop an optimisation model to find the best wind turbine locations for offshore wind farms and to obtain the wind farm layout to maximise the profit, avoiding cable crossings, taking into account the wake effect and power losses. The ideal positioning of wind turbines is important for maximising the production of electrical energy. Furthermore, a techno-economic analysis was performed to calculate the main economic indicators, namely the net present value, the internal rate of return, and the payback period, to support the decision-making. The results showed that the developed model found the best solution that maximised the profits of the wind farm during its lifetime. It also showed that the location of the offshore substation played a key role in achieving these goals.

2023

Anomaly Detection in Microservice-Based Systems

Autores
Nobre, J; Pires, EJS; Reis, A;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Currently, distributed software systems have evolved at an unprecedented pace. Modern software-quality requirements are high and require significant staff support and effort. This study investigates the use of a supervised machine learning model, a Multi-Layer Perceptron (MLP), for anomaly detection in microservices. The study covers the creation of a microservices infrastructure, the development of a fault injection module that simulates application-level and service-level anomalies, the creation of a system monitoring dataset, and the creation and validation of the MLP model to detect anomalies. The results indicate that the MLP model effectively detects anomalies in both domains with higher accuracy, precision, recovery, and F1 score on the service-level anomaly dataset. The potential for more effective distributed system monitoring and management automation is highlighted in this study by focusing on service-level metrics such as service response times. This study provides valuable information about the effectiveness of supervised machine learning models in detecting anomalies across distributed software systems.

  • 49
  • 356