Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2023

A Systematic Review on Automatic Insect Detection Using Deep Learning

Autores
Teixeira, AC; Ribeiro, J; Morais, R; Sousa, JJ; Cunha, A;

Publicação
AGRICULTURE-BASEL

Abstract
Globally, insect pests are the primary reason for reduced crop yield and quality. Although pesticides are commonly used to control and eliminate these pests, they can have adverse effects on the environment, human health, and natural resources. As an alternative, integrated pest management has been devised to enhance insect pest control, decrease the excessive use of pesticides, and enhance the output and quality of crops. With the improvements in artificial intelligence technologies, several applications have emerged in the agricultural context, including automatic detection, monitoring, and identification of insects. The purpose of this article is to outline the leading techniques for the automated detection of insects, highlighting the most successful approaches and methodologies while also drawing attention to the remaining challenges and gaps in this area. The aim is to furnish the reader with an overview of the major developments in this field. This study analysed 92 studies published between 2016 and 2022 on the automatic detection of insects in traps using deep learning techniques. The search was conducted on six electronic databases, and 36 articles met the inclusion criteria. The inclusion criteria were studies that applied deep learning techniques for insect classification, counting, and detection, written in English. The selection process involved analysing the title, keywords, and abstract of each study, resulting in the exclusion of 33 articles. The remaining 36 articles included 12 for the classification task and 24 for the detection task. Two main approaches-standard and adaptable-for insect detection were identified, with various architectures and detectors. The accuracy of the classification was found to be most influenced by dataset size, while detection was significantly affected by the number of classes and dataset size. The study also highlights two challenges and recommendations, namely, dataset characteristics (such as unbalanced classes and incomplete annotation) and methodologies (such as the limitations of algorithms for small objects and the lack of information about small insects). To overcome these challenges, further research is recommended to improve insect pest management practices. This research should focus on addressing the limitations and challenges identified in this article to ensure more effective insect pest management.

2023

MT-InSAR and Dam Modeling for the Comprehensive Monitoring of an Earth-Fill Dam: The Case of the Beninar Dam (Almeria, Spain)

Autores
Marchamalo-Sacristan, M; Ruiz-Armenteros, AM; Lamas-Fernandez, F; Gonzalez-Rodrigo, B; Martinez-Marin, R; Delgado-Blasco, JM; Bakon, M; Lazecky, M; Perissin, D; Papco, J; Sousa, JJ;

Publicação
REMOTE SENSING

Abstract
The Beninar Dam, located in Southeastern Spain, is an earth-fill dam that has experienced filtration issues since its construction in 1985. Despite the installation of various monitoring systems, the data collected are sparse and inadequate for the dam's lifetime. The present research integrates Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) and dam modeling to validate the monitoring of this dam, opening the way to enhanced integrated monitoring systems. MT-InSAR was proved to be a reliable and continuous monitoring system for dam deformation, surpassing previously installed systems in terms of precision. MT-InSAR allowed the almost-continuous monitoring of this dam since 1992, combining ERS, Envisat, and Sentinel-1A/B data. Line-of-sight (LOS) velocities of settlement in the crest of the dam evolved from maximums of -6 mm/year (1992-2000), -4 mm/year (2002-2010), and -2 mm/year (2015-2021) with median values of -2.6 and -3.0 mm/year in the first periods (ERS and Envisat) and -1.3 mm/year in the Sentinel 1-A/B period. These results are consistent with the maximum admissible modeled deformation from construction, confirming that settlement was more intense in the dam's early stages and decreased over time. MT-InSAR was also used to integrate the monitoring of the dam basin, including critical slopes, quarries, and infrastructures, such as roads, tracks, and spillways. This study allows us to conclude that MT-InSAR and dam modeling are important elements for the integrated monitoring systems of embankment dams. This conclusion supports the complete integration of MT-InSAR and 3D modeling into the monitoring systems of embankment dams, as they are a key complement to traditional geotechnical monitoring and can overcome the main limitations of topographical monitoring.

2023

Using machine learning and satellite data from multiple sources to analyze mining, water management, and preservation of cultural heritage

Autores
Sousa, JJ; Lin, JH; Wang, Q; Liu, G; Fan, JH; Bai, SB; Zhao, HL; Pan, HY; Wei, WJ; Rittlinger, V; Mayrhofer, P; Sonnenschein, R; Steger, S; Reis, LP;

Publicação
GEO-SPATIAL INFORMATION SCIENCE

Abstract
Remote sensing, particularly satellite-based, can play a valuable role in monitoring areas prone to geohazards. The high spatial and temporal coverage provided by satellite data can be used to reconstruct past events and continuously monitor sensitive areas for potential hazards. This paper presents a range of techniques and methods that were applied for in-depth analysis and utilization of Earth observation data, with a particular emphasis on: (1) detecting mining subsidence, where a novel approach is proposed by combining an improved U-Net model and Interferometry Synthetic Aperture Radar (InSAR) technology. The results showed that the Efficient Channel Attention (ECA) U-Net model performed better than the U-Net (baseline) model in terms of Mean Intersection over Union (MIoU) and Intersection over Union (IoU) indicators; (2) monitoring water conservancy and hydropower engineering. The Xiaolangdi multipurpose dam complex was monitored using Small BAsline Subsets (SBAS) InSAR method on Sentinel-1 time series data and four small regions with high deformation rates were identified on the slope of the reservoir bank on the north side. The dam body also showed obvious deformation with a velocity exceeding 60 mm/a; (3) the evaluation of the potential of InSAR results to integrate monitoring and warning systems for valuable heritage and architectural preservation. The overall outcome of these methods showed that the use of Artificial Intelligence (AI) techniques in combination with InSAR data leads to more efficient analysis and interpretation, resulting in improved accuracy and prompt identification of potential hazards; and (4) finally, this study also presents a method for detecting landslides in mountainous regions, using optical imagery. The new temporal landslide detection method is evaluated over a 7-year analysis period and unlike conventional bi-temporal change detection methods, this approach does not depend on any prior-knowledge and can potentially detect landslides over extended periods of time such as decades.

2023

Almond cultivar identification using machine learning classifiers applied to UAV-based multispectral data

Autores
Guimaraes, N; Padua, L; Sousa, JJ; Bento, A; Couto, P;

Publicação
INTERNATIONAL JOURNAL OF REMOTE SENSING

Abstract
In Portugal, almonds are a very important crop, due to their nutritional properties. In the northeastern part of the country, the almond sector has endured over time, with strong cultural traditions and key economic significance. In these areas, several cultivars are used. In effect, the presence of various almond cultivars implies differentiated management in irrigation, disease control, pruning system, and harvest planning. Therefore, cultivar classification is essential over large agricultural areas. Over the last decades, remote-sensing data have led to important breakthroughs in the classification of different cultivars for several crops. Nonetheless, for almonds, studies are incipient. Thus, this study aims to fill this knowledge gap and explore the classification of almond cultivars in an almond orchard. High-resolution multispectral data were acquired by an unmanned aerial vehicle (UAV). Vegetation indices (VIs) and tree structural parameters were, subsequently, estimated. To obtain an accurate cultivar identification, four machine learning classifiers, such as K-nearest neighbour (kNN), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost), were applied and optimized through the fine-tuning process. The accuracy of machine learning classifiers was analysed. SVM and RF performed best with OAs of 76% and 74% using VIs and spectral bands (GREEN, GRVI, GN, REN, ClRE). Adding the canopy height model (CHM) improved performance, with RF and XGBoost having OAs of 88% and 84%. kNN performed worst with an OA of 73% using only VIs and spectral bands, 80% with VIs, spectral bands and CHM, and 93% with VIs, CHM, and tree crown area (TCA). The best performance was achieved by RF and XGBoost with OAs of 99% using VIs, CHM, and TCA. These results demonstrate the importance of the feature selection process. Moreover, this study reveals the feasibility of remote-sensing data and machine learning classifiers in the classification of almond cultivars.

2023

Segmentation as a Pre-processing for Automatic Grape Moths Detection

Autores
Teixeira, AC; Carneiro, GA; Morais, R; Sousa, JJ; Cunha, A;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Grape moths are a significant pest in vineyards, causing damage and losses in wine production. Pheromone traps are used to monitor grape moth populations and determine their developmental status to make informed decisions regarding pest control. Smart pest monitoring systems that employ sensors, cameras, and artificial intelligence algorithms are becoming increasingly popular due to their ability to streamline the monitoring process. In this study, we investigate the effectiveness of using segmentation as a pre-processing step to improve the detection of grape moths in trap images using deep learning models. We train two segmentation models, the U-Net architecture with ResNet18 and InceptionV3 backbonesl, and utilize the segmented and non-segmented images in the YOLOv5s and YOLOv8s detectors to evaluate the impact of segmentation on detection. Our results show that segmentation preprocessing can significantly improve detection by 3% for YOLOv5 and 1.2% for YOLOv8. These findings highlight the potential of segmentation pre-processing for enhancing insect detection in smart pest monitoring systems, paving the way for further exploration of different training methods.

2023

Can the Segmentation Improve the Grape Varieties' Identification Through Images Acquired On-Field?

Autores
Carneiro, GA; Texeira, A; Morais, R; Sousa, JJ; Cunha, A;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Grape varieties play an important role in wine's production chain, its identification is crucial for controlling and regulating the production. Nowadays, two techniques are widely used, ampelography and molecular analysis. However, there are problems with both of them. In this scenario, Deep Learning classifiers emerged as a tool to automatically classify grape varieties. A problem with the classification of on-field acquired images is that there is a lot of information unrelated to the target classification. In this study, the use of segmentation before classification to remove such unrelated information was analyzed. We used two grape varieties identification datasets to fine-tune a pre-trained EfficientNetV2S. Our results showed that segmentation can slightly improve classification performance if only unrelated information is removed.

  • 51
  • 356