Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2023

The impact of ground control points for the 3D study of grapevines in steep slope vineyards

Autores
Stolarski, O; Lourenço, JM; Peres, E; Morais, R; Sousa, JJ; Pádua, L;

Publicação
CENTERIS 2023 - International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies 2023, Porto, Portugal, November 8-10, 2023.

Abstract
Data acquisition through unmanned aerial vehicles (UAVs) has become integral to the study of agricultural crops, especially for multitemporal analyses spanning the entire growing season. Ensuring accurate data alignment is essential not only to maintain data quality but also to leverage the continuous monitoring of the same area over time. Ground control points (GCPs) play a critical role in geolocating UAV data. Their absence can lead to planimetric and altimetric discrepancies, which are particularly impactful in 3D plant-level studies. This study is centered on the examination of misalignment effects in a challenging steep slope vineyard environment and their impacts on 3D alignment accuracy. For this purpose, a UAV equipped with an RGB camera to capture imagery at two distinct flight heights. Various scenarios, each involving a different number of GCPs, were assessed to evaluate their impact on alignment precision. The methodology employed holds potential for assessing geolocation accuracy in complex 3D environments, providing value insights for vineyard monitoring. © 2024 The Author(s). Published by Elsevier B.V.

2023

IDENTIFICATION OF APHIDS USING MACHINE LEARNING CLASSIFIERS ON UAV-BASED MULTISPECTRAL DATA

Autores
Guimaraes, N; Pádua, L; Sousa, JJ; Bento, A; Couto, P;

Publicação
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM

Abstract
Almond trees in Portugal are susceptible to aphid infestation, which can result in reduced fruit production. To effectively tackle this issue, the combination of remote sensing (RS) data and machine learning (ML) classifiers can be used to accurately detect the presence of aphids. This study focuses in the implementation of ML classifiers and RS data analysis to identify aphids on almond trees, using high-resolution multispectral data collected through an unmanned aerial vehicle (UAV) in a Portuguese almond orchard. Four ML classifiers, kNN, SVM, RF and XGBoost, were employed and fine-tuned using vegetation indices derived from spectral data. The results revealed that the SVM classifier achieved an overall accuracy (OA) of 77%, followed by kNN with an OA of 74%, while XGBoost and RF achieved OAs of 71% and 69%, respectively. Consequently, this study demonstrates the viability of employing RS data and ML classifiers for aphid identification in almond orchards.

2023

The Digital Twin Paradigm Applied to Soil Quality Assessment: A Systematic Literature Review

Autores
Silva, L; Rodriguez Sedano, F; Baptista, P; Coelho, JP;

Publicação
SENSORS

Abstract
This article presents the results regarding a systematic literature review procedure on digital twins applied to precision agriculture. In particular, research and development activities aimed at the use of digital twins, in the context of predictive control, with the purpose of improving soil quality. This study was carried out through an exhaustive search of scientific literature on five different databases. A total of 158 articles were extracted as a result of this search. After a first screening process, only 11 articles were considered to be aligned with the current topic. Subsequently, these articles were categorised to extract all relevant information, using the preferred reporting items for systematic reviews and meta-analyses methods. Based on the obtained results, there are two main conclusions to draw: First, when compared with industrial processes, there is only a very slight rising trend regarding the use of digital twins in agriculture. Second, within the time frame in which this work was carried out, it was not possible to find any published paper on the use of digital twins for soil quality improvement within a model predictive control context.

2023

Knee positioning systems for X-ray environment: a literature review

Autores
Lopes, C; Vilaca, A; Rocha, C; Mendes, J;

Publicação
PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE

Abstract
The knee is one of the most stressed joints of the human body, being susceptible to ligament injuries and degenerative diseases. Due to the rising incidence of knee pathologies, the number of knee X-rays acquired is also increasing. Such X-rays are obtained for the diagnosis of knee injuries, the evaluation of the knee before and after surgery, and the monitoring of the knee joint's stability. These types of diagnosis and monitoring of the knee usually involve radiography under physical stress. This widely used medical tool provides a more objective analysis of the measurement of the knee laxity than a physical examination does, involving knee stress tests, such as valgus, varus, and Lachman. Despite being an improvement to physical examination regarding the physician's bias, stress radiography is still performed manually in a lot of healthcare facilities. To avoid exposing the physician to radiation and to decrease the number of X-ray images rejected due to inadequate positioning of the patient or the presence of artefacts, positioning systems for stress radiography of the knee have been developed. This review analyses knee positioning systems for X-ray environment, concluding that they have improved the objectivity and reproducibility during stress radiographs, but have failed to either be radiolucent or versatile with a simple ergonomic set-up.

2023

Exploring the Impact of Water Stress on Grapevine Gene Expression and Polyphenol Production: Insights for Developing a Systems Biology Model †

Autores
Portis, I; Tosin, R; Oliveira Pinto, R; Pereira Dias, L; Santos, C; Martins, R; Cunha, M;

Publicação
Engineering Proceedings

Abstract
This scientific paper delves into the effects of water stress on grapevines, specifically focusing on gene expression and polyphenol production. We conducted a controlled greenhouse experiment with three hydric conditions and analyzed the expression of genes related to polyphenol biosynthesis. Our results revealed significant differences in the expression of ABCC1, a gene linked to anthocyanin metabolism, under different irrigation treatments. These findings highlight the importance of anthocyanins in grapevine responses to abiotic stresses. By integrating genomics, metabolomics, and systems biology, this study contributes to our understanding of grapevine physiology under water stress conditions and offers insights into developing sensor technologies for real-world applications in viticulture. © 2023 by the authors.

2023

Enhancing Kiwi Bacterial Canker Leaf Assessment: Integrating Hyperspectral-Based Vegetation Indexes in Predictive Modeling †

Autores
Reis Pereira, M; Tosin, R; Martins, C; Dos Santos, FN; Tavares, F; Cunha, M;

Publicação
Engineering Proceedings

Abstract
The potential of hyperspectral UV–VIS–NIR reflectance for the in-field, non-destructive discrimination of bacterial canker on kiwi leaves caused by Pseudomonas syringae pv. actinidiae (Psa) was analyzed. Spectral data (325–1075 nm) of twenty kiwi plants were obtained in vivo and in situ with a handheld spectroradiometer in two commercial kiwi orchards in northern Portugal over 15 weeks, resulting in 504 spectral measurements. The suitability of different vegetation indexes (VIs) and applied predictive models (based on supervised machine learning algorithms) for classifying non-symptomatic and symptomatic kiwi leaves was evaluated. Eight distinct types of VIs were identified as relevant for disease diagnosis, highlighting the relevance of the Green, Red, Red-Edge, and NIR spectral features. The class prediction was achieved with good model metrics, achieving an accuracy of 0.71, kappa of 0.42, sensitivity of 0.67, specificity of 0.75, and F1 of 0.67. Thus, the present findings demonstrated the potential of hyperspectral UV–VIS–NIR reflectance for the non-destructive discrimination of bacterial canker on kiwi leaves. © 2023 by the authors.

  • 63
  • 369