2022
Autores
Ferreira, MFS; Silva, NA; Guimarães, D; Martins, RC; Jorge, PAS;
Publicação
U.Porto Journal of Engineering
Abstract
Laser-induced breakdown spectroscopy (LIBS) is a technique that leverages atomic emission towards element identification and quantification. While the potential of the technology is vast, it still struggles with obstacles such as the variability of the technique. In recent years, several methods have exploited modifications to the standard implementation to work around this problem, mostly focused on the laser side to increase the signal-to-noise ratio of the emission. In this paper, we explore the effect of pulse duration on the detected signal intensity using a tunable LIBS system that consists of a versatile fiber laser, capable of emitting square-shaped pulses with a duration ranging from 10 to 100 ns. Our results show that, by tuning the duration of the pulse, it is possible to increase the signal-to-noise ratio of relevant elemental emission lines, an effect that we relate with the computed plasma temperature and associated density for the ion species. Despite the limitations of the work due to the low-resolution and small range of the spectrometer used, the preliminary results pave an interesting path towards the design of controllable LIBS systems that can be tailored to increase the signal-to-noise ratio and thus be useful for the deployment of more sensitive instruments both for qualitative and quantitative purposes. © 2022, Universidade do Porto - Faculdade de Engenharia. All rights reserved.
2022
Autores
Tosin, R; Martins, R; Pocas, I; Cunha, M;
Publicação
BIOSYSTEMS ENGINEERING
Abstract
This paper focuses on predicting predawn leaf water potential through a self-learning artificial intelligence (SL-AI) algorithm, a novel spectral processing algorithm that is based on the search for covariance modes, providing a direct relationship between spectral information and plant constituents. The SL-AI algorithm was applied in a dataset containing 847 observations obtained with a handheld hyperspectral spectroradiometer (400 -1010 nm), structured as: three grapevine cultivars (Touriga Nacional, Touriga Franca and Tinta Barroca), collected in three years (2014, 2015 and 2017), in two test sites in the renowned Douro Wine Region, northeast of Portugal. The Psi(pd) SL-AI quantification was tested both in regressive (R-2 = 0.97, MAPE = 18.30%) and classification (three classes; overall accuracy = 86.27%) approaches, where the radiation absorption spectrum zones of the chlorophylls, xanthophyll and water were identified along the vegetative growth cycle. The dataset was also tested with Artificial Neural Networks with Principal Component Analysis (ANN-PCA) and Partial Least Square (PLS), which presented worse performance when compared to SL-AI in the regressive (ANN-PCA - R-2 = 0.85, MAPE = 43.64%; PLS - R-2 = 0.94, MAPE = 28.76%) and classification (ANN-PCA - overall accuracy: 72.37%; PLS - overall accuracy: 73.79%) approaches. The Psi(pd) modelled with SL-AI demonstrated, through hyperspectral reflectance, a cause-effect of the grapevine's hydric status with the absorbance of bands related to chlorophyll, xanthophylls and water. This cause-effect interaction could be explored to identify cultivars and cultural practices, hydric, heating and lighting stresses.
2022
Autores
Magalhaes, P; Ferreira, N;
Publicação
Automation
Abstract
2022
Autores
Torres, R; Ferreira, N;
Publicação
ELECTRONICS
Abstract
Robotic manipulation, an area inside the field of industrial automation and robotics, consists of using a robotic arm to guide and grasp a desired object through actuators such as a vacuum or fingers, among others. Some objects, such as fragile ceramic pieces, require special attention to the force and the gripping method exerted on them. For this purpose, two grippers were developed, where one of them is a rotary vacuum gripper and the other is an impact gripper with three fingers, each one equipped with a load sensor capable of evaluating the values of load exerted by the grip actuators onto the object to be manipulated. The vacuum gripper was developed for the purpose of glazing a coffee saucer and the gripper with three fingers was developed for the purpose of polishing a coffee cup. Being that the impact gripper with sensorial feedback reacts to the excess and lack of grip force exerted, both these grippers were developed with success, handling with ease the ceramic pieces proposed.
2022
Autores
Monteiro, AT; Alves, P; Carvalho Santos, C; Lucas, R; Cunha, M; da Costa, EM; Fava, F;
Publicação
DIVERSITY-BASEL
Abstract
The spatial monitoring of plant diversity in the endangered species-rich grasslands of European mountain pastoral systems is an important step for fairer and more efficient Agri-Environmental policy schemes supporting conservation. This study assessed the underlying support for a spatially explicit monitoring of plant species richness at parcel level (policy making scale) in Southern European mountain grasslands, with statistical models informed by Sentinel-2 satellite and environmental factors. Twenty-four grassland parcels were surveyed for species richness in the Peneda-Geres National Park, northern Portugal. Using a multi-model inference approach, three competing hypotheses guided by the species-scaling theoretical framework were established: species-area (P1), species-energy (P2) and species-spectral heterogeneity (P3), each representing a candidate spatial pathway to predict species richness. To evaluate the statistical support of each spatial pathway, generalized linear models were fitted and model selection based on Akaike information criterion (AIC) was conducted. Later, the performance of the most supported spatial pathway(s) was assessed using a leave-one-out cross validation. A model guided by the species-energy hypothesis (P2) was the most parsimonious spatial pathway to monitor plant species richness in mountain grassland parcels (P2, AICc = 137.6, increment AIC = 0.0, wi = 0.97). Species-area and species-spectral heterogeneity pathways (P1 and P3) were less statistically supported (Delta AICc values in the range 5.7-10.0). The underlying support of the species-energy spatial pathway was based on Sentinel-2 satellite data, namely on the near-infrared (NIR) green ratio in the spring season (NIR/Green(spring)) and on its ratio of change between spring and summer (NIR/Green(change)). Both predictor variables related negatively to species richness. Grassland parcels with lower values of near-infrared (NIR) green ratio and lower seasonal amplitude presented higher species richness records. The leave-one-out cross validation indicated a moderate performance of the species-energy spatial pathway in predicting species richness in the grassland parcels covered by the dataset (R-2 = 0.44, RMSE = 4.3 species, MAE = 3.5 species). Overall, a species-energy framework based on Sentinel 2 data resulted in a promising spatial pathway for the monitoring of species richness in mountain grassland parcels and for informing decision making on Agri-Environmental policy schemes. The near-infrared (NIR) green ratio and its change in time seems a relevant variable to deliver predictions for plant species richness and further research should be conducted on that.
2022
Autores
Guo, YH; Chen, SZ; Li, XX; Cunha, M; Jayavelu, S; Cammarano, D; Fu, YS;
Publicação
REMOTE SENSING
Abstract
Precisely monitoring the growth condition and nutritional status of maize is crucial for optimizing agronomic management and improving agricultural production. Multi-spectral sensors are widely applied in ecological and agricultural domains. However, the images collected under varying weather conditions on multiple days show a lack of data consistency. In this study, the Mini MCA 6 Camera from UAV platform was used to collect images covering different growth stages of maize. The empirical line calibration method was applied to establish generic equations for radiometric calibration. The coefficient of determination (R-2) of the reflectance from calibrated images and ASD Handheld-2 ranged from 0.964 to 0.988 (calibration), and from 0.874 to 0.927 (validation), respectively. Similarly, the root mean square errors (RMSE) were 0.110, 0.089, and 0.102% for validation using data of 5 August, 21 September, and both days in 2019, respectively. The soil and plant analyzer development (SPAD) values were measured and applied to build the linear regression relationships with spectral and textural indices of different growth stages. The Stepwise regression model (SRM) was applied to identify the optimal combination of spectral and textural indices for estimating SPAD values. The support vector machine (SVM) and random forest (RF) models were independently applied for estimating SPAD values based on the optimal combinations. SVM performed better than RF in estimating SPAD values with R-2 (0.81) and RMSE (0.14), respectively. This study contributed to the retrieval of SPAD values based on both spectral and textural indices extracted from multi-spectral images using machine learning methods.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.