Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2021

Unimodal and Multimodal Perception for Forest Management: Review and Dataset

Autores
da Silva, DQ; dos Santos, FN; Sousa, AJ; Filipe, V; Boaventura Cunha, J;

Publicação
COMPUTATION

Abstract
Robotics navigation and perception for forest management are challenging due to the existence of many obstacles to detect and avoid and the sharp illumination changes. Advanced perception systems are needed because they can enable the development of robotic and machinery solutions to accomplish a smarter, more precise, and sustainable forestry. This article presents a state-of-the-art review about unimodal and multimodal perception in forests, detailing the current developed work about perception using a single type of sensors (unimodal) and by combining data from different kinds of sensors (multimodal). This work also makes a comparison between existing perception datasets in the literature and presents a new multimodal dataset, composed by images and laser scanning data, as a contribution for this research field. Lastly, a critical analysis of the works collected is conducted by identifying strengths and research trends in this domain.

2021

Robust human position estimation in cooperative robotic cells

Autores
Amorim, A; Guimares, D; Mendona, T; Neto, P; Costa, P; Moreira, AP;

Publicação
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING

Abstract
Robots are increasingly present in our lives, sharing the workspace and tasks with human co-workers. However, existing interfaces for human-robot interaction / cooperation (HRI/C) have limited levels of intuitiveness to use and safety is a major concern when humans and robots share the same workspace. Many times, this is due to the lack of a reliable estimation of the human pose in space which is the primary input to calculate the human-robot minimum distance (required for safety and collision avoidance) and HRI/C featuring machine learning algorithms classifying human behaviours / gestures. Each sensor type has its own characteristics resulting in problems such as occlusions (vision) and drift (inertial) when used in an isolated fashion. In this paper, it is proposed a combined system that merges the human tracking provided by a 3D vision sensor with the pose estimation provided by a set of inertial measurement units (IMUs) placed in human body limbs. The IMUs compensate the gaps in occluded areas to have tracking continuity. To mitigate the lingering effects of the IMU offset we propose a continuous online calculation of the offset value. Experimental tests were designed to simulate human motion in a human-robot collaborative environment where the robot moves away to avoid unexpected collisions with de human. Results indicate that our approach is able to capture the human's position, for example the forearm, with a precision in the millimetre range and robustness to occlusions.

2021

Performance Enhancement of a Neato XV-11 Laser Scanner Applied to Mobile Robot Localization: A Stochastic Modeling Approach

Autores
Gonçalves, J; Coelho, JP; Braz César, M; Costa, P;

Publicação
CONTROLO 2020

Abstract
Laser scanners are widely used in mobile robotics localization systems but, despite the enormous potential of its use, their high price tag is a major drawback, mainly for hobbyist and educational robotics practitioners that usually have a reduced budget. The Neato XV-11 Laser Scanner is a very low cost alternative, when compared with the current available laser scanners, being this fact the main motivation for its use. The modeling of a hacked Neato XV-11 Laser Scanner allows to provide valuable information that can promote the development of better designs of robot localization systems based on this sensor. This paper presents, as an example, the performance enhancement of a Neato XV-11 Laser Scanner applied to mobile robot self-localization, being used as case study the Perfect Match Algorithm applied to the Robot@Factory competition. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.

2021

Modeling of an elastic joint: An experimental setup approach

Autores
Pinto, VH; Lima, J; Gonçalves, J; Costa, P;

Publicação
Lecture Notes in Electrical Engineering

Abstract
Throughout this paper it is presented a novel elastic joint configuration, being compared with other similar joints found in recent literature. It is presented its modeling, being its estimation process developed offline, based on a proposed experimental setup. This setup enables to monitor and collect data from an absolute encoder and a load cell. Some data obtained from these sensors is then graphically represented, like angle and torque, obtaining some parameters. Finally, through an optimization process, where the error of the angle is minimized, the remaining parameters of the joint are estimated, thus obtaining a realistic model of the system. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.

2021

Design, Modeling, and Control of a Single Leg for a Legged-Wheeled Locomotion System with Non-Rigid Joint

Autores
Pinto, VH; Goncalves, J; Costa, P;

Publicação
ACTUATORS

Abstract
This article presents an innovative legged-wheeled system, designed to be applied in a hybrid robotic vehicle's locomotion system, as its driving member. The proposed system will be capable to combine the advantages of legged and wheeled locomotion systems, having 3DOF connected through a combination of both rigid and non-rigid joints. This configuration provides the vehicle the ability to absorb impacts and selected external disturbances. A state space approach was adopted to control the joints, increasing the system's stability and adaptability. Throughout this article, the entire design process of this robotic system will be presented, as well as its modeling and control. The proposed system's design is biologically inspired, having as reference the human leg, resulting in the development of a prototype. The results of the testing process with the proposed prototype are also presented. This system was designed to be modular, low-cost, and to increase the autonomy of typical autonomous legged-wheeled locomotion systems.

2021

Model of a dc motor with worm gearbox

Autores
Pinto, VH; Gonçalves, J; Costa, P;

Publicação
Lecture Notes in Electrical Engineering

Abstract
In this paper, the modeling of a system based on a DC Motor with Worm Gearbox is presented. Worm gearboxes are typically applied when its compactness is an important factor, as well as an orthogonal redirectioning is required. One of the greatest advantages of worm gears is its unique self-locking characteristic. This means that the gear can only rotate by its input side, and cannot be actuated through the load side. Using a DC motor with a worm gearbox is a solution that guarantees that, for instance, in a robotic manipulator, when the arm’s joint reaches a desired angle, it does not move until a next required setpoint. Modeling accurately this system is crucial in order to develop its control in a more efficient way. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.

  • 85
  • 357