2021
Autores
Pires, F; Ahmad, B; Moreira, AP; Leitão, P;
Publicação
4th IEEE International Conference on Industrial Cyber-Physical Systems, ICPS 2021, Victoria, BC, Canada, May 10-12, 2021
Abstract
2021
Autores
Soares, I; Sousa, RB; Petry, M; Moreira, AP;
Publicação
MULTIMODAL TECHNOLOGIES AND INTERACTION
Abstract
Augmented and virtual reality have been experiencing rapid growth in recent years, but there is still no deep knowledge regarding their capabilities and in what fields they could be explored. In that sense, this paper presents a study on the accuracy and repeatability of Microsoft's HoloLens 2 (augmented reality device) and HTC Vive (virtual reality device) using an OptiTrack system as ground truth. For the HoloLens 2, the method used was hand tracking, whereas, in HTC Vive, the object tracked was the system's hand controller. A series of tests in different scenarios and situations were performed to explore what could influence the measures. The HTC Vive obtained results in the millimeter range, while the HoloLens 2 revealed not very accurate measurements (around 2 cm). Although the difference can seem to be considerable, the fact that HoloLens 2 was tracking the user's hand and not the system's controller made a huge impact. The results are considered a significant step for the ongoing project of developing a human-robot interface by demonstrating an industrial robot using extended reality, which shows great potential to succeed based on our data.
2021
Autores
Baltazar, AR; dos Santos, FN; Moreira, AP; Valente, A; Cunha, JB;
Publicação
ELECTRONICS
Abstract
The automation of agricultural processes is expected to positively impact the environment by reducing waste and increasing food security, maximising resource use. Precision spraying is a method used to reduce the losses during pesticides application, reducing chemical residues in the soil. In this work, we developed a smart and novel electric sprayer that can be assembled on a robot. The sprayer has a crop perception system that calculates the leaf density based on a support vector machine (SVM) classifier using image histograms (local binary pattern (LBP), vegetation index, average, and hue). This density can then be used as a reference value to feed a controller that determines the air flow, the water rate, and the water density of the sprayer. This perception system was developed and tested with a created dataset available to the scientific community and represents a significant contribution. The results of the leaf density classifier show an accuracy score that varies between 80% and 85%. The conducted tests prove that the solution has the potential to increase the spraying accuracy and precision.
2021
Autores
Soares, I; Petry, M; Moreira, AP;
Publicação
SENSORS
Abstract
The world is living the fourth industrial revolution, marked by the increasing intelligence and automation of manufacturing systems. Nevertheless, there are types of tasks that are too complex or too expensive to be fully automated, it would be more efficient if the machines were able to work with the human, not only by sharing the same workspace but also as useful collaborators. A possible solution to that problem is on human-robot interaction systems, understanding the applications where they can be helpful to implement and what are the challenges they face. This work proposes the development of an industrial prototype of a human-machine interaction system through Augmented Reality, in which the objective is to enable an industrial operator without any programming experience to program a robot. The system itself is divided into two different parts: the tracking system, which records the operator's hand movement, and the translator system, which writes the program to be sent to the robot that will execute the task. To demonstrate the concept, the user drew geometric figures, and the robot was able to replicate the operator's path recorded.
2021
Autores
Pires, F; Ahmad, B; Moreira, AP; Leitão, P;
Publicação
19th IEEE International Conference on Industrial Informatics, INDIN 2021, Palma de Mallorca, Spain, July 21-23, 2021
Abstract
The research about the digital twin concept is growing worldwide, especially in the industrial sector, due to the increasing digitisation level associated to Industry 4.0. The application of the digital twin concept improves performance of a system by implementing monitoring, diagnosis, optimisation, and decision support actions. In particular, the decision-making process is very time consuming since the decision-maker is presented with hundreds of different scenarios that can be simulated and assessed in a what-if perspective. Bearing this in mind, this paper proposes to integrate a digital twin-based what-if simulation with a recommendation system to improve the decision-making cycle. The recommendation system is based on a reinforcement learning technique and takes user knowledge of the system into consideration and trust in the system recommendation. The applicability of the proposed approach is presented in an assembly line case study for recommending the best configurations for the system operation, in terms of the optimal number of AGVs (Autonomous Guided Vehicles) in various scenarios. The achieved results show its successful application and highlight the benefits of using AI-based recommendation systems for what-if simulation in digital twin systems. © 2021 IEEE.
2021
Autores
Pinho T.M.; Coelho J.P.; Oliveira P.M.; Oliveira B.; Marques A.; Rasinmäki J.; Moreira A.P.; Veiga G.; Boaventura-Cunha J.;
Publicação
Applied Computing and Informatics
Abstract
The optimisation of forest fuels supply chain involves several entities actors, and particularities. To successfully manage these supply chains, efficient tools must be devised with the ability to deal with stakeholders dynamic interactions and to optimize the supply chain performance as a whole while being stable and robust, even in the presence of uncertainties. This work proposes a framework to coordinate different planning levels and event-based models to manage the forest-based supply chain. In particular, with the new methodology, the resilience and flexibility of the biomass supply chain is increased through a closed-loop system based on the system forecasts provided by a discrete-event model. The developed event-based predictive model will be described in detail, explaining its link with the remaining elements. The implemented models and their links within the proposed framework are presented in a case study in Finland and results are shown to illustrate the advantage of the proposed architecture.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.