Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Cláudia Vanessa Brito

2024

Mastering Artifact Correction in Neuroimaging Analysis: A Retrospective Approach

Autores
Oliveira, A; Cepa, B; Brito, C; Sousa, A;

Publicação

Abstract
The correction of artifacts in Magnetic Resonance Imaging (MRI) is increasingly relevant as voluntary and involuntary artifacts can hinder data acquisition. Reverting from corrupted to artifact-free images is a complex task. Deep Learning (DL) models have been employed to preserve data characteristics and to identify and correct those artifacts. We propose MOANA, a novel DL-based solution to correct artifacts in multi-contrast brain MRI scans. MOANA offers two models: the simulation and the correction models. The simulation model introduces perturbations similar to those occurring in an exam while preserving the original image as ground truth; this is required as publicly available datasets rarely have motion-corrupted images. It allows the addition of three types of artifacts with different degrees of severity. The DL-based correction model adds a fourth contrast to state-of-the-art solutions while improving the overall performance of the models. MOANA achieved the highest results in the FLAIR contrast, with a Structural Similarity Index Measure (SSIM) of 0.9803 and a Normalized Mutual Information (NMI) of 0.8030. With this, the MOANA model can correct large volumes of images in less time and adapt to different levels of artifact severity, allowing for better diagnosis.

2024

MAC: An Artifact Correction Framework for Brain MRI based on Deep Neural Networks

Autores
Oliveira, A; Cepa, B; Brito, C; Sousa, A;

Publicação

Abstract
AbstractThe correction of artifacts in Magnetic Resonance Imaging (MRI) is crucial due to physiological phenomena and technical issues affecting diagnostic quality. Reverting from corrupted to artifact-free images is a complex task. Deep Learning (DL) models have been employed to preserve data characteristics and to identify and correct those artifacts. We proposeMAC, a novel DL-based solution to correct artifacts in multi-contrast brain MRI scans.MACoffers two models: the simulation and the correction models. The simulation model introduces perturbations similar to those occurring in an exam while preserving the original image as ground truth; this is required as publicly available datasets rarely have motion-corrupted images. It allows the addition of three types of artifacts with different degrees of severity. The DL-based correction model adds a fourth contrast to state-of-the-art solutions while improving the overall performance of the models.MACachieved the highest results in the FLAIR contrast, with a Structural Similarity Index Measure (SSIM) of 0.9803 and a Normalized Mutual Information (NMI) of 0.8030. Moreover, the model reduced training time by 63% compared to its predecessor.MACmodel can correct large volumes of images faster and adapt to different levels of artifact severity than current state-ofthe-art models, allowing for better diagnosis.

2025

Promoting sustainable and personalized travel behaviors while preserving data privacy

Autores
Brito C.; Pina N.; Esteves T.; Vitorino R.; Cunha I.; Paulo J.;

Publicação
Transportation Engineering

Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private. This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.

  • 3
  • 3