Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por João Pereira Silva

2025

A Review of Voicing Decision in Whispered Speech: From Rules to Machine Learning

Autores
da Silva, JMPP; Duarte Nunes, G; Ferreira, A;

Publicação

Abstract

2024

KDBI special issue: Time-series pattern verification in CNC turning-A comparative study of one-class and binary classification

Autores
da Silva, JP; Nogueira, AR; Pinto, J; Curral, M; Alves, AC; Sousa, R;

Publicação
EXPERT SYSTEMS

Abstract
Integrating Industry 4.0 and Quality 4.0 optimises manufacturing through IoT and ML, improving processes and product quality. The primary challenge involves identifying patterns in computer numerical control (CNC) machining time-series data to boost manufacturing quality control. The proposed solution involves an experimental study comparing one-class and binary classification algorithms. This study aims to classify time-series data from CNC turning machines, offering insight into monitoring and adjusting tool wear to maintain product quality. The methodology entails extracting spectral features from time-series data to train both one-class and binary classification algorithms, assessing their effectiveness and computational efficiency. Although certain models consistently outperform others, determining the best performing is not possible, as a trade-off between classification and computational performance is observed, with gradient boosting standing out for effectively balancing both aspects. Thus, the choice between one-class and binary classification ultimately relies on dataset's features and task objectives.

  • 2
  • 2