2024
Autores
Silva, R; Pereira, I; Nicola, S; Madureira, A; Bettencourt, N; Reis, JL; Santos, JP; de Oliveira, DA;
Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
Over the past two decades, Digital Transformation (DT) has been focused on improving businesses, industries, and the general public through significant breakthroughs. This paper examines the significant developments brought forth by DT and how they impact organizations. This analysis explores the impact of Virtual Reality (VR) and the Metaverse on global businesses, taking inspiration from successful case studies such as Netflix, Amazon, and Meta. This study emphasizes the potential of virtual reality and the Metaverse in facilitating remote meetings, training employees, engaging with consumers, and gathering data. Case studies and strategic recommendations are offered for overcoming barriers to the adoption of these digital technologies. The study finishes by addressing the future trajectory of DT and emphasizing the significance of devoting time, commitment, and resources to effectively utilize the range of potential offered by VR and the Metaverse. It highlights the importance for organizations to comprehend and handle this ever-changing environment to remain at the forefront of the digital frontier.
2022
Autores
Jabbar Meerja, A; Bin Ibne Reaz, M; Madureira, AM;
Publicação
Abstract
2023
Autores
Pereira, MG; Vilaça, M; Braga, D; Madureira, A; Da Silva, J; Santos, D; Carvalho, E;
Publicação
WOUND REPAIR AND REGENERATION
Abstract
Diabetic foot ulcers (DFU) are one of the most frequent and debilitating complications of diabetes. DFU wound healing is a highly complex process, resulting in significant medical, economic and social challenges. Therefore, early identification of patients with a high-risk profile would be important to adequate treatment and more successful health outcomes. This study explores risk assessment profiles for DFU healing and healing prognosis, using machine learning predictive approaches and decision tree algorithms. Patients were evaluated at baseline (T0; N = 158) and 2 months later (T1; N = 108) on sociodemographic, clinical, biochemical and psychological variables. The performance evaluation of the models comprised F1-score, accuracy, precision and recall. Only profiles with F1-score >0.7 were selected for analysis. According to the two profiles generated for DFU healing, the most important predictive factors were illness representations on T1 IPQ-B (IPQ-B <= 9.5 and < 10.5) and the DFU duration (<= 13 weeks). The two predictive models for DFU healing prognosis suggest that biochemical factors are the best predictors of a favorable healing prognosis, namely IL-6, microRNA-146a-5p and PECAM-1 at T0 and angiopoietin-2 at T1. Illness perception at T0 (IPQ-B <= 39.5) also emerged as a relevant predictor for healing prognosis. The results emphasize the importance of DFU duration, illness perception and biochemical markers as predictors of healing in chronic DFUs. Future research is needed to confirm and test the obtained predictive models.
2018
Autores
Abraham, A; Cherukuri, AK; Madureira, AM; Muda, AK;
Publicação
Advances in Intelligent Systems and Computing
Abstract
2020
Autores
Madureira, AM; Abraham, A; Gandhi, N; Silva, C; Antunes, M;
Publicação
Advances in Intelligent Systems and Computing
Abstract
2022
Autores
Abraham, A; Madureira, AM; Kaklauskas, A; Gandhi, N; Bajaj, A; Muda, AK; Kriksciuniene, D; Ferreira, JC;
Publicação
Lecture Notes in Networks and Systems
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.