Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Susana Bayo

2022

Seasonal and subseasonal wind power characterization and forecasting for the Iberian Peninsula and the Canary Islands: A systematic review

Autores
Bayo Besteiro, S; García Rodríguez, M; Labandeira, X; Añel, JA;

Publicação
INTERNATIONAL JOURNAL OF CLIMATOLOGY

Abstract
AbstractRenewable energy has a key role to play in the transition towards a low-carbon society. Despite its importance, relatively little attention has been focused on the crucial impact of weather and climate on energy demand and supply, or the generation or operational planning of renewable technologies. In particular, to improve the operation and longer-term planning of renewables, it is essential to consider seasonal and subseasonal weather forecasting. Unfortunately, reports that focus on these issues are not common in scientific literature. This paper presents a systematic review of the seasonal forecasting of wind and wind power for the Iberian Peninsula and the Canary Islands, a region leading the world in the development of renewable energies (particularly wind) and thus an important illustration in global terms. To this end, we consider the scientific literature published over the last 13?years (2008–2021). An initial search of this literature produced 14,293 documents, but our review suggests that only around 0.2% are actually relevant to our purposes. The results show that the teleconnection patterns (North Atlantic Oscillation [NAO], East Atlantic [EA] and Scandinavian [SCAND]) and the stratosphere are important sources of predictability of winds in the Iberian Peninsula. We conclude that the existing literature in this crucial area is very limited, which points to the need for increased research efforts, that could lead to great returns. Moreover, the approach and methods developed here could be applied to other areas for which systematic reviews might be either useful or necessary.

2024

Extreme Weather Events and the Energy Sector in 2021

Autores
Añel J.A.; Pérez-Souto C.; Bayo-Besteiro S.; Prieto-Godino L.; Bloomfield H.; Troccoli A.; Torre L.D.L.;

Publicação
Weather, Climate, and Society

Abstract
In 2021, the energy sector was put at risk by extreme weather in many different ways: North America and Spain suffered heavy winter storms that led to the collapse of the electricity network; California specifically experienced heavy droughts and heat-wave conditions, causing the operations of hydropower stations to halt; floods caused substantial damage to energy infrastructure in central Europe, Australia, and China throughout the year, and unusual wind drought conditions decreased wind power production in the United Kingdom by almost 40% during summer. The total economic impacts of these extreme weather events are estimated at billions of U.S. dollars. Here we review and assess in some detail the main extreme weather events that impacted the energy sector in 2021 worldwide, discussing some of the most relevant case studies and the meteorological conditions that led to them. We provide a perspective on their impacts on electricity generation, transmission, and consumption, and summarize estimations of economic losses.

  • 2
  • 2