Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Pedro Henriques Abreu

2018

Evaluation of Oversampling Data Balancing Techniques in the Context of Ordinal Classification

Autores
Domingues, I; Amorim, JP; Abreu, PH; Duarte, H; Santos, JAM;

Publicação
2018 International Joint Conference on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8-13, 2018

Abstract

2018

Exploring the Effects of Data Distribution in Missing Data Imputation

Autores
Soares, JP; Santos, MS; Abreu, PH; Araújo, H; Santos, JAM;

Publicação
Advances in Intelligent Data Analysis XVII - 17th International Symposium, IDA 2018, 's-Hertogenbosch, The Netherlands, October 24-26, 2018, Proceedings

Abstract

2018

Missing Data Imputation via Denoising Autoencoders: The Untold Story

Autores
Costa, AF; Santos, MS; Soares, JP; Abreu, PH;

Publicação
Advances in Intelligent Data Analysis XVII - 17th International Symposium, IDA 2018, 's-Hertogenbosch, The Netherlands, October 24-26, 2018, Proceedings

Abstract

2018

Interpreting deep learning models for ordinal problems

Autores
Amorim, JP; Domingues, I; Abreu, PH; Santos, JAM;

Publicação
26th European Symposium on Artificial Neural Networks, ESANN 2018, Bruges, Belgium, April 25-27, 2018

Abstract
Machine learning algorithms have evolved by exchanging simplicity and interpretability for accuracy, which prevents their adoption in critical tasks such as healthcare. Progress can be made by improving interpretability of complex models while preserving performance. This work introduces an extension of interpretable mimic learning which teaches in-terpretable models to mimic predictions of complex deep neural networks, not only on binary problems but also in ordinal settings. The results show that the mimic models have comparative performance to Deep Neural Network models, with the advantage of being interpretable.

2018

Denial of Service Attacks: Detecting the Frailties of Machine Learning Algorithms in the Classification Process

Autores
Frazão, I; Abreu, PH; Cruz, T; Araújo, H; Simões, P;

Publicação
Critical Information Infrastructures Security - 13th International Conference, CRITIS 2018, Kaunas, Lithuania, September 24-26, 2018, Revised Selected Papers

Abstract

2019

Computer Vision in Esophageal Cancer: A Literature Review

Autores
Domingues, I; Sampaio, I; Duarte, H; Santos, JAM; Abreu, PH;

Publicação
IEEE Access

Abstract

  • 18
  • 20