Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por BIO

2021

Application of a Fiber Optic Refractometric Sensor to Measure the Concentration of Paracetamol in Crystallization Experiments

Autores
Soares, L; Cruz, P; Novais, S; Ferreira, A; Frazao, O; Silva, S;

Publicação
IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE

Abstract
A refractometric sensor was applied to measure in real-time the concentration of Active Pharmaceutical Ingredients (APIs) in crystallization experiments. Paracetamol was used as a model system due to the extensive literature available for this API. The refractometric sensor was fabricated by a simple and inexpensive method that consisted in splicing a short section of a multimode fiber to a single mode fiber. The compact geometry of this sensor, with an external diameter of just $125\ \mu\mathrm{m}$, allowed it to measure the concentration of paracetamol, both in a stirred tank crystallizer operating in batch and in an oscillatory flow crystallizer operating continuously. The proposed technique shows the potential to monitor the concentration of APIs in crystallizers of different sizes and geometries as an alternative to more expensive and complex analysis equipment.

2021

Diffuse reflectance and machine learning techniques to differentiate colorectal cancer ex vivo

Autores
Fernandes, L; Carvalho, S; Carneiro, I; Henrique, R; Tuchin, VV; Oliveira, HP; Oliveira, LM;

Publicação
CHAOS

Abstract
In this study, we used machine learning techniques to reconstruct the wavelength dependence of the absorption coefficient of human normal and pathological colorectal mucosa tissues. Using only diffuse reflectance spectra from the ex vivo mucosa tissues as input to algorithms, several approaches were tried before obtaining good matching between the generated absorption coefficients and the ones previously calculated for the mucosa tissues from invasive experimental spectral measurements. Considering the optimized match for the results generated with the multilayer perceptron regression method, we were able to identify differentiated accumulation of lipofuscin in the absorption coefficient spectra of both mucosa tissues as we have done before with the corresponding results calculated directly from invasive measurements. Considering the random forest regressor algorithm, the estimated absorption coefficient spectra almost matched the ones previously calculated. By subtracting the absorption of lipofuscin from these spectra, we obtained similar hemoglobin ratios at 410/550 nm: 18.9-fold/9.3-fold for the healthy mucosa and 46.6-fold/24.2-fold for the pathological mucosa, while from direct calculations, those ratios were 19.7-fold/10.1-fold for the healthy mucosa and 33.1-fold/17.3-fold for the pathological mucosa. The higher values obtained in this study indicate a higher blood content in the pathological samples used to measure the diffuse reflectance spectra. In light of such accuracy and sensibility to the presence of hidden absorbers, with a different accumulation between healthy and pathological tissues, good perspectives become available to develop minimally invasive spectroscopy methods for in vivo early detection and monitoring of colorectal cancer.

2021

Particle Classification through the Analysis of the Forward Scattered Signal in Optical Tweezers

Autores
Carvalho, IA; Silva, NA; Rosa, CC; Coelho, LCC; Jorge, PAS;

Publicação
SENSORS

Abstract
The ability to select, isolate, and manipulate micron-sized particles or small clusters has made optical tweezers one of the emergent tools for modern biotechnology. In conventional setups, the classification of the trapped specimen is usually achieved through the acquired image, the scattered signal, or additional information such as Raman spectroscopy. In this work, we propose a solution that uses the temporal data signal from the scattering process of the trapping laser, acquired with a quadrant photodetector. Our methodology rests on a pre-processing strategy that combines Fourier transform and principal component analysis to reduce the dimension of the data and perform relevant feature extraction. Testing a wide range of standard machine learning algorithms, it is shown that this methodology allows achieving accuracy performances around 90%, validating the concept of using the temporal dynamics of the scattering signal for the classification task. Achieved with 500 millisecond signals and leveraging on methods of low computational footprint, the results presented pave the way for the deployment of alternative and faster classification methodologies in optical trapping technologies.

2021

LNDb challenge on automatic lung cancer patient management

Autores
Pedrosa, J; Aresta, G; Ferreira, C; Atwal, G; Phoulady, HA; Chen, XY; Chen, RZ; Li, JL; Wang, LS; Galdran, A; Bouchachia, H; Kaluva, KC; Vaidhya, K; Chunduru, A; Tarai, S; Nadimpalli, SPP; Vaidya, S; Kim, I; Rassadin, A; Tian, ZH; Sun, ZW; Jia, YZ; Men, XJ; Ramos, I; Cunha, A; Campilho, A;

Publicação
MEDICAL IMAGE ANALYSIS

Abstract
Lung cancer is the deadliest type of cancer worldwide and late detection is the major factor for the low survival rate of patients. Low dose computed tomography has been suggested as a potential screening tool but manual screening is costly and time-consuming. This has fuelled the development of automatic methods for the detection, segmentation and characterisation of pulmonary nodules. In spite of promising results, the application of automatic methods to clinical routine is not straightforward and only a limited number of studies have addressed the problem in a holistic way. With the goal of advancing the state of the art, the Lung Nodule Database (LNDb) Challenge on automatic lung cancer patient management was organized. The LNDb Challenge addressed lung nodule detection, segmentation and characterization as well as prediction of patient follow-up according to the 2017 Fleischner society pulmonary nodule guidelines. 294 CT scans were thus collected retrospectively at the Centro Hospitalar e Universitrio de So Joo in Porto, Portugal and each CT was annotated by at least one radiologist. Annotations comprised nodule centroids, segmentations and subjective characterization. 58 CTs and the corresponding annotations were withheld as a separate test set. A total of 947 users registered for the challenge and 11 successful submissions for at least one of the sub-challenges were received. For patient follow-up prediction, a maximum quadratic weighted Cohen's kappa of 0.580 was obtained. In terms of nodule detection, a sensitivity below 0.4 (and 0.7) at 1 false positive per scan was obtained for nodules identified by at least one (and two) radiologist(s). For nodule segmentation, a maximum Jaccard score of 0.567 was obtained, surpassing the interobserver variability. In terms of nodule texture characterization, a maximum quadratic weighted Cohen's kappa of 0.733 was obtained, with part solid nodules being particularly challenging to classify correctly. Detailed analysis of the proposed methods and the differences in performance allow to identify the major challenges remaining and future directions data collection, augmentation/generation and evaluation of under-represented classes, the incorporation of scan-level information for better decision making and the development of tools and challenges with clinical-oriented goals. The LNDb Challenge and associated data remain publicly available so that future methods can be tested and benchmarked, promoting the development of new algorithms in lung cancer medical image analysis and patient followup recommendation.

2021

AUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles

Autores
Esteves, T; Pinto, JR; Ferreira, PM; Costa, PA; Rodrigues, LA; Antunes, I; Lopes, G; Gamito, P; Abrantes, AJ; Jorge, PM; Lourenco, A; Sequeira, AF; Cardoso, JS; Rebelo, A;

Publicação
IEEE ACCESS

Abstract
As technology and artificial intelligence conquer a place under the spotlight in the automotive world, driver drowsiness monitoring systems have sparked much interest as a way to increase safety and avoid sleepiness-related accidents. Such technologies, however, stumble upon the observation that each driver presents a distinct set of behavioral and physiological manifestations of drowsiness, thus rendering its objective assessment a non-trivial process. The AUTOMOTIVE project studied the application of signal processing and machine learning techniques for driver-specific drowsiness detection in smart vehicles, enabled by immersive driving simulators. More broadly, comprehensive research on biometrics using the electrocardiogram (ECG) and face enables the continuous learning of subject-specific models of drowsiness for more efficient monitoring. This paper aims to offer a holistic but comprehensive view of the research and development work conducted for the AUTOMOTIVE project across the various addressed topics and how it ultimately brings us closer to the target of improved driver drowsiness monitoring.

2021

Maximum Relevance Minimum Redundancy Dropout with Informative Kernel Determinantal Point Process

Autores
Saffari, M; Khodayar, M; Saadabadi, MSE; Sequeira, AF; Cardoso, JS;

Publicação
SENSORS

Abstract
In recent years, deep neural networks have shown significant progress in computer vision due to their large generalization capacity; however, the overfitting problem ubiquitously threatens the learning process of these highly nonlinear architectures. Dropout is a recent solution to mitigate overfitting that has witnessed significant success in various classification applications. Recently, many efforts have been made to improve the Standard dropout using an unsupervised merit-based semantic selection of neurons in the latent space. However, these studies do not consider the task-relevant information quality and quantity and the diversity of the latent kernels. To solve the challenge of dropping less informative neurons in deep learning, we propose an efficient end-to-end dropout algorithm that selects the most informative neurons with the highest correlation with the target output considering the sparsity in its selection procedure. First, to promote activation diversity, we devise an approach to select the most diverse set of neurons by making use of determinantal point process (DPP) sampling. Furthermore, to incorporate task specificity into deep latent features, a mutual information (MI)-based merit function is developed. Leveraging the proposed MI with DPP sampling, we introduce the novel DPPMI dropout that adaptively adjusts the retention rate of neurons based on their contribution to the neural network task. Empirical studies on real-world classification benchmarks including, MNIST, SVHN, CIFAR10, CIFAR100, demonstrate the superiority of our proposed method over recent state-of-the-art dropout algorithms in the literature.

  • 19
  • 113