Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por BIO

2023

Measurement of tissue optical properties in a wide spectral range: a review [Invited]

Autores
Martins, IS; Silva, HF; Lazareva, EN; Chernomyrdin, NV; Zaytsev, KI; Oliveira, LM; Tuchin, VV;

Publicação
BIOMEDICAL OPTICS EXPRESS

Abstract
A distinctive feature of this review is a critical analysis of methods and results of measurements of the optical properties of tissues in a wide spectral range from deep UV to terahertz waves. Much attention is paid to measurements of the refractive index of biological tissues and liquids, the knowledge of which is necessary for the effective application of many methods of optical imaging and diagnostics. The optical parameters of healthy and pathological tissues are presented, and the reasons for their differences are discussed, which is important for the discrimination of pathologies and the demarcation of their boundaries. When considering the interaction of terahertz radiation with tissues, the concept of an effective medium is discussed, and relaxation models of the effective optical properties of tissues are presented. Attention is drawn to the manifestation of the scattering properties of tissues in the THz range and the problems of measuring the optical properties of tissues in this range are discussed. In conclusion, a method for the dynamic analysis of the optical properties of tissues under optical clearing using an application of immersion agents is presented. The main mechanisms and technologies of optical clearing, as well as examples of the successful application for differentiation of healthy and pathological tissues, are analyzed. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

2023

1st Spring Biophotonics Conference in Porto

Autores
Oliveira, LM; Meglinski, I; Tuchin, VV;

Publicação
JOURNAL OF BIOPHOTONICS

Abstract
[No abstract available]

2023

Detection of Intermittent Claudication from Smartphone Inertial Data in Community Walks Using Machine Learning Classifiers

Autores
Pinto, B; Correia, MV; Paredes, H; Silva, I;

Publicação
SENSORS

Abstract
Peripheral arterial disease (PAD) causes blockage of the arteries, altering the blood flow to the lower limbs. This blockage can cause the individual with PAD to feel severe pain in the lower limbs. The main contribution of this research is the discovery of a solution that allows the automatic detection of the onset of claudication based on data analysis from patients' smartphones. For the data-collection procedure, 40 patients were asked to walk with a smartphone on a thirty-meter path, back and forth, for six minutes. Each patient conducted the test twice on two different days. Several machine learning models were compared to detect the onset of claudication on two different datasets. The results suggest that we can identify the onset of claudication using inertial sensors with a best case accuracy of 92.25% for the Extreme Gradient Boosting model.

2023

Erbium-doped fiber ring cavity for the measurement of refractive index variations

Autores
Perez Herrera, RA; Soares, L; Novais, S; Frazão, O; Silva, S;

Publicação
Proceedings of SPIE - The International Society for Optical Engineering

Abstract

2023

Fast calculation of spectral optical properties and pigment content detection in human normal and pathological kidney

Autores
Botelho, AR; Silva, HF; Martins, IS; Carneiro, IC; Carvalho, SD; Henrique, RM; Tuchin, VV; Oliveira, LM;

Publicação
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY

Abstract
A fast calculation method was used to obtain the spectral optical properties of human normal and pathological (chromophobe renal cell carcinoma) kidney tissues. Using total transmittance, total reflectance and collimated transmittance spectra acquired from ex vivo kidney samples, the spectral optical properties of both tissues, namely the absorption, the scattering and the reduced scattering coefficients, as well as the scattering anisotropy, dispersion and light penetration depth, were calculated between 200 and 1000 nm. Analysis of the mean absorption coefficient spectra of the kidney tissues showed that both contain melanin and lipofuscin, and that 83 % of the melanin in the normal kidney converts into lipofuscin in the pathological kidney.

2023

Development of a Collaborative Robotic Platform for Autonomous Auscultation

Autores
Lopes, D; Coelho, L; Silva, MF;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Listening to internal body sounds, or auscultation, is one of the most popular diagnostic techniques in medicine. In addition to being simple, non-invasive, and low-cost, the information it offers, in real time, is essential for clinical decision-making. This process, usually done by a doctor in the presence of the patient, currently presents three challenges: procedure duration, participants' safety, and the patient's privacy. In this article we tackle these by proposing a new autonomous robotic auscultation system. With the patient prepared for the examination, a 3D computer vision sub-system is able to identify the auscultation points and translate them into spatial coordinates. The robotic arm is then responsible for taking the stethoscope surface into contact with the patient's skin surface at the various auscultation points. The proposed solution was evaluated to perform a simulated pulmonary auscultation in six patients (with distinct height, weight, and skin color). The obtained results showed that the vision subsystem was able to correctly identify 100% of the auscultation points, with uncontrolled lighting conditions, and the positioning subsystem was able to accurately position the gripper on the corresponding positions on the human body. Patients reported no discomfort during auscultation using the described automated procedure.

  • 2
  • 113