2021
Autores
Morgado, J; Pereira, T; Silva, F; Freitas, C; Negrao, E; de Lima, BF; da Silva, MC; Madureira, AJ; Ramos, I; Hespanhol, V; Costa, JL; Cunha, A; Oliveira, HP;
Publicação
APPLIED SCIENCES-BASEL
Abstract
The evolution of personalized medicine has changed the therapeutic strategy from classical chemotherapy and radiotherapy to a genetic modification targeted therapy, and although biopsy is the traditional method to genetically characterize lung cancer tumor, it is an invasive and painful procedure for the patient. Nodule image features extracted from computed tomography (CT) scans have been used to create machine learning models that predict gene mutation status in a noninvasive, fast, and easy-to-use manner. However, recent studies have shown that radiomic features extracted from an extended region of interest (ROI) beyond the tumor, might be more relevant to predict the mutation status in lung cancer, and consequently may be used to significantly decrease the mortality rate of patients battling this condition. In this work, we investigated the relation between image phenotypes and the mutation status of Epidermal Growth Factor Receptor (EGFR), the most frequently mutated gene in lung cancer with several approved targeted-therapies, using radiomic features extracted from the lung containing the nodule. A variety of linear, nonlinear, and ensemble predictive classification models, along with several feature selection methods, were used to classify the binary outcome of wild-type or mutant EGFR mutation status. The results show that a comprehensive approach using a ROI that included the lung with nodule can capture relevant information and successfully predict the EGFR mutation status with increased performance compared to local nodule analyses. Linear Support Vector Machine, Elastic Net, and Logistic Regression, combined with the Principal Component Analysis feature selection method implemented with 70% of variance in the feature set, were the best-performing classifiers, reaching Area Under the Curve (AUC) values ranging from 0.725 to 0.737. This approach that exploits a holistic analysis indicates that information from more extensive regions of the lung containing the nodule allows a more complete lung cancer characterization and should be considered in future radiogenomic studies.
2021
Autores
Malafaia, M; Pereira, T; Silva, F; Morgado, J; Cunha, A; Oliveira, HP;
Publicação
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC)
Abstract
Lung cancer treatments that are accurate and effective are urgently needed. The diagnosis of advanced-stage patients accounts for the majority of the cases, being essential to provide a specialized course of treatment. One emerging course of treatment relies on target therapy through the testing of biomarkers, such as the Epidermal Growth Factor Receptor (EGFR) gene. Such testing can be obtained from invasive methods, namely through biopsy, which may be avoided by applying machine learning techniques to the imaging phenotypes extracted from Computerized Tomography (CT). This study aims to explore the contribution of ensemble methods when applied to the prediction of EGFR mutation status. The obtained results translate in a direct correlation between the semantic predictive model and the outcome of the combined ensemble methods, showing that the utilized features do not have a positive contribution to the predictive developed models.
2021
Autores
Teixeira, JF; Dias, M; Batista, E; Costa, J; Teixeira, LF; Oliveira, HP;
Publicação
APPLIED SCIENCES-BASEL
Abstract
The scarcity of balanced and annotated datasets has been a recurring problem in medical image analysis. Several researchers have tried to fill this gap employing dataset synthesis with adversarial networks (GANs). Breast magnetic resonance imaging (MRI) provides complex, texture-rich medical images, with the same annotation shortage issues, for which, to the best of our knowledge, no previous work tried synthesizing data. Within this context, our work addresses the problem of synthesizing breast MRI images from corresponding annotations and evaluate the impact of this data augmentation strategy on a semantic segmentation task. We explored variations of image-to-image translation using conditional GANs, namely fitting the generator's architecture with residual blocks and experimenting with cycle consistency approaches. We studied the impact of these changes on visual verisimilarity and how an U-Net segmentation model is affected by the usage of synthetic data. We achieved sufficiently realistic-looking breast MRI images and maintained a stable segmentation score even when completely replacing the dataset with the synthetic set. Our results were promising, especially when concerning to Pix2PixHD and Residual CycleGAN architectures.
2021
Autores
Sequeira, AF; Goncalves, T; Silva, W; Pinto, JR; Cardoso, JS;
Publicação
IET BIOMETRICS
Abstract
Biometric recognition and presentation attack detection (PAD) methods strongly rely on deep learning algorithms. Though often more accurate, these models operate as complex black boxes. Interpretability tools are now being used to delve deeper into the operation of these methods, which is why this work advocates their integration in the PAD scenario. Building upon previous work, a face PAD model based on convolutional neural networks was implemented and evaluated both through traditional PAD metrics and with interpretability tools. An evaluation on the stability of the explanations obtained from testing models with attacks known and unknown in the learning step is made. To overcome the limitations of direct comparison, a suitable representation of the explanations is constructed to quantify how much two explanations differ from each other. From the point of view of interpretability, the results obtained in intra and inter class comparisons led to the conclusion that the presence of more attacks during training has a positive effect in the generalisation and robustness of the models. This is an exploratory study that confirms the urge to establish new approaches in biometrics that incorporate interpretability tools. Moreover, there is a need for methodologies to assess and compare the quality of explanations.
2021
Autores
Animashaun, A; Bernardes, G;
Publicação
4th Symposium on Occupational Safety and Health Proceedings Book
Abstract
2021
Autores
Baltazar, AR; Petry, MR; Silva, MF; Moreira, AP;
Publicação
SN APPLIED SCIENCES
Abstract
The transport of patients from the inpatient service to the operating room is a recurrent task in a hospital routine. This task is repetitive, non-ergonomic, time consuming, and requires the labor of patient transporters. In this paper is presented a system, named Connected Driverless Wheelchair, that can receive transportation requests directly from the hospital information management system, pick up patients at their beds, navigate autonomously through different floors, avoid obstacles, communicate with elevators, and drop patients off at the designated operating room. As a result, a prototype capable of transporting patients autonomously in hospital environments was obtained. Although it was impossible to test the final developed system at the hospital as planned, due to the COVID-19 pandemic, the extensive tests conducted at the robotics laboratory facilities, and our previous experience in integrating mobile robots in hospitals, allowed to conclude that it is perfectly prepared for this integration to be carried out.The achieved results are relevant since this is a system that may be applied to support these types of tasks in the future, making the transport of patients more efficient (both from a cost and time perspective), without unpredictable delays and, in some cases, safer.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.