Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por BIO

2018

Radiologists' gaze characterization during lung nodule search in thoracic CT

Autores
Machado, M; Aresta, G; Leitao, P; Carvalho, AS; Rodrigues, M; Ramos, I; Cunha, A; Campilho, A;

Publicação
2018 1ST INTERNATIONAL CONFERENCE ON GRAPHICS AND INTERACTION (ICGI 2018)

Abstract
Lung cancer diagnosis is made by radiologists through nodule search in chest Computed Tomography (CT) scans. This task is known to be difficult and prone to errors that can lead to late diagnosis. Although Computer-Aided Diagnostic (CAD) systems are promising tools to be used in clinical practice, experienced radiologists continue to perform better diagnosis than CADs. This paper proposes a methodology for characterizing the radiologist's gaze during nodules search in chest CT scans. The main goals are to identify regions that attract the radiologists' attention, which can then be used for improving a lung CAD system, and to create a tool to assist radiologists during the search task. For that purpose, the methodology processes the radiologists' gaze and their mouse coordinates during the nodule search. The resulting data is then processed to obtain a 3D gaze path from which relevant attention studies can be derived. To better convey the found information, a reference model of the lung that eases the communication of the location of relevant anatomical/pathological findings is also proposed. The methodology is tested on a set of 24 real-practice gazes, recorded via an Eye tracker, from 3 radiologists.

2018

Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach

Autores
Paiva, JS; Cardoso, J; Pereira, T;

Publicação
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS

Abstract
Objective: The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. Materials and methods: The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39 pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). Results and discussion: SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917 +/- 0.0024 and a F-Measure of 0.9925 +/- 0.0019, in comparison with ANN, which reached the values of 0.9847 +/- 0.0032 and 0.9852 +/- 0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. Conclusion: The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW.

2018

A Weakly-Supervised Framework for Interpretable Diabetic Retinopathy Detection on Retinal Images

Autores
Costa, P; Galdran, A; Smailagic, A; Campilho, A;

Publicação
IEEE ACCESS

Abstract
Diabetic retinopathy (DR) detection is a critical retinal image analysis task in the context of early blindness prevention. Unfortunately, in order to train a model to accurately detect DR based on the presence of different retinal lesions, typically a dataset with medical expert's annotations at the pixel level is needed. In this paper, a new methodology based on the multiple instance learning (MIL) framework is developed in order to overcome this necessity by leveraging the implicit information present on annotations made at the image level. Contrary to previous MIL-based DR detection systems, the main contribution of the proposed technique is the joint optimization of the instance encoding and the image classification stages. In this way, more useful mid-level representations of pathological images can be obtained. The explainability of the model decisions is further enhanced by means of a new loss function enforcing appropriate instance and mid-level representations. The proposed technique achieves comparable or better results than other recently proposed methods, with 90% area under the receiver operating characteristic curve (AUC) on Messidor, 93% AUC on DR1, and 96% AUC on DR2, while improving the interpretability of the produced decisions.

2018

End-to-End Ovarian Structures Segmentation

Autores
Wanderley, DS; Carvalho, CB; Domingues, A; Peixoto, C; Pignatelli, D; Beires, J; Silva, J; Campilho, A;

Publicação
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings

Abstract
The segmentation and characterization of the ovarian structures are important tasks in gynecological and reproductive medicine. Ultrasound imaging is typically used for the medical diagnosis within this field but the understanding of the images can be difficult due to their characteristics. Furthermore, the complexity of ultrasound data may lead to a heavy image processing, which makes the application of classical methods of computer vision difficult. This work presents the first supervised fully convolutional neural network (fCNN) for the automatic segmentation of ovarian structures in B-mode ultrasound images. Due to the small dataset available, only 57 images were used for training. In order to overcome this limitation, several regularization techniques were used and are discussed in this paper. The experiments show the ability of the fCNN to learn features to distinguish ovarian structures, achieving a Dice similarity coefficient (DSC) of 0.855 for the segmentation of the stroma and a DSC of 0.955 for the follicles. When compared with a semi-automatic commercial application for follicle segmentation, the proposed fCNN achieved an average improvement of 19%. © Springer Nature Switzerland AG 2019.

2018

MedAL: Accurate and Robust Deep Active Learning for Medical Image Analysis

Autores
Smailagic, A; Costa, P; Noh, HY; Walawalkar, D; Khandelwal, K; Galdran, A; Mirshekari, M; Fagert, J; Xu, SS; Zhang, P; Campilho, A;

Publicação
2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA)

Abstract
Deep learning models have been successfully used in medical image analysis problems but they require a large amount of labeled images to obtain good performance. However, such large labeled datasets are costly to acquire. Active learning techniques can be used to minimize the number of required training labels while maximizing the model's performance. In this work, we propose a novel sampling method that queries the unlabeled examples that maximize the average distance to all training set examples in a learned feature space. We then extend our sampling method to define a better initial training set, without the need for a trained model, by using Oriented FAST and Rotated BRIEF (ORB) feature descriptors. We validate MedAL on 3 medical image datasets and show that our method is robust to different dataset properties. MedAL is also efficient, achieving 80% accuracy on the task of Diabetic Retinopathy detection using only 425 labeled images, corresponding to a 32% reduction in the number of required labeled examples compared to the standard uncertainty sampling technique, and a 40% reduction compared to random sampling.

2018

A Class Imbalance Ordinal Method for Alzheimer's Disease Classification

Autores
Cruz, R; Silveira, M; Cardoso, JS;

Publicação
2018 International Workshop on Pattern Recognition in Neuroimaging, PRNI 2018, Singapore, Singapore, June 12-14, 2018

Abstract
The majority of computer-Aided diagnosis methods for Alzheimer's disease (AD) from brain images either address only two stages of the disease at a time (and reduce the problem to binary classification) or do not exploit the ordinal nature of the different classes. An exception is the work by Fan et al. [1], which proposed an ordinal method that obtained better performance than traditional multiclass classification. Still, special care should be taken when data is class imbalanced, i.e. when some classes are overly represented when compared to others. Building on top of [1], this work makes use of a recently published ordinal classifier, which transforms the problem into sets of pairwise ranking problems, in order to address the class imbalance in the data [2]. Several methods were experimented with, using a Support Vector Machine as the underlying estimator. The pairwise ranking approach has shown promising results, both for traditional and imbalance metrics. © 2018 IEEE.

  • 56
  • 113