Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por BIO

2018

A wearable system for the stress monitoring of air traffic controllers during an air traffic control refresher training and the trier social stress test: A comparative study

Autores
Rodrigues, S; Paiva, JS; Dias, D; Aleixo, M; Filipe, R; Cunha, JPS;

Publicação
Open Bioinformatics Journal

Abstract
Background: Air Traffic Control (ATC) is a complex and demanding process, exposing Air Traffic Controllers (ATCs) to high stress. Recently, efforts have been made in ATC to maintain safety and efficiency in the face of increasing air traffic demands. Computer simulations have been a useful tool for ATC training, improving ATCs skills and consequently traffic safety. Objectives: This study aims to: a) evaluate psychophysiological indices of stress in an ATC simulation environment using a wearable biomonitoring platform. In order to obtain a measure of ATCs stress levels, results from an experimental study with the same participants, that included a stress-induced task were used as a stress ground truth; b) understand if there are differences in stress levels of ATCs with different job functions (“advisors” vs “operationals”) when performing an ATC Refresher Training, in a simulator environment. Methods: Two studies were conducted with ATCs: Study 1, that included a stress-induced task - the Trier Social Stress Test (TSST) and Study 2, that included an ATC simulation task. Linear Heart Rate Variability (HRV) features from ATCs were acquired using a medical grade wearable Electrocardiogram (ECG) device. Self-reports were used to measure perceived stress. Results: TSST was self-reported as being much more stressful than the simulation task. Physiological data supports these results. Results from study 2 showed more stress among the “advisors” group when comparing to the “operational” group. Conclusion: Results point to the importance of the development of quantified Occupational Health (qOHealth) devices to allow monitoring and differentiation of ATCs stress responses. © 2018 Donato and Denaro.

2018

Predicting short term mood developments among depressed patients using adherence and ecological momentary assessment data

Autores
Mikus, A; Hoogendoorn, M; Rocha, A; Gama, J; Ruwaard, J; Riper, H;

Publicação
INTERNET INTERVENTIONS-THE APPLICATION OF INFORMATION TECHNOLOGY IN MENTAL AND BEHAVIOURAL HEALTH

Abstract
Technology driven interventions provide us with an increasing amount of fine-grained data about the patient. This data includes regular ecological momentary assessments (EMA) but also response times to EMA questions by a user. When observing this data, we see a huge variation between the patterns exhibited by different patients. Some are more stable while others vary a lot over time. This poses a challenging problem for the domain of artificial intelligence and makes on wondering whether it is possible to predict the future mental state of a patient using the data that is available. In the end, these predictions could potentially contribute to interventions that tailor the feedback to the user on a daily basis, for example by warning a user that a fall-back might be expected during the next days, or by applying a strategy to prevent the fall-back from occurring in the first place. In this work, we focus on short term mood prediction by considering the adherence and usage data as an additional predictor. We apply recurrent neural networks to handle the temporal aspects best and try to explore whether individual, group level, or one single predictive model provides the highest predictive performance (measured using the root mean squared error (RMSE)). We use data collected from patients from five countries who used the ICT4Depression/MoodBuster platform in the context of the EU E-COMPARED project. In total, we used the data from 143 patients (with between 9 and 425 days of EMA data) who were diagnosed with a major depressive disorder according to DSM-IV. Results show that we can make predictions of short term mood change quite accurate (ranging between 0.065 and 0.11). The past EMA mood ratings proved to be the most influential while adherence and usage data did not improve prediction accuracy. In general, group level predictions proved to be the most promising, however differences were not significant. Short term mood prediction remains a difficult task, but from this research we can conclude that sophisticated machine learning algorithms/setups can result in accurate performance. For future work, we want to use more data from the mobile phone to improve predictive performance of short term mood.

2018

Using multi-relational data mining to discriminate blended therapy efficiency on patients based on log data

Autores
Rocha, A; Camacho, R; Ruwaard, J; Riper, H;

Publicação
INTERNET INTERVENTIONS-THE APPLICATION OF INFORMATION TECHNOLOGY IN MENTAL AND BEHAVIOURAL HEALTH

Abstract
Introduction: Clinical trials of blended Internet-based treatments deliver a wealth of data from various sources, such as self-report questionnaires, diagnostic interviews, treatment platform log files and Ecological Momentary Assessments (EMA). Mining these complex data for clinically relevant patterns is a daunting task for which no definitive best method exists. In this paper, we explore the expressive power of the multi-relational Inductive Logic Programming (ILP) data mining approach, using combined trial data of the EU E-COMPARED depression trial. Methods: We explored the capability of ILP to handle and combine (implicit) multiple relationships in the E-COMPARED data. This data set has the following features that favor ILP analysis: 1) Time reasoning is involved; 2) there is a reasonable amount of explicit useful relations to be analyzed; 3) ILP is capable of building comprehensible models that might be perceived as putative explanations by domain experts; 4) both numerical and statistical models may coexist within ILP models if necessary. In our analyses, we focused on scores of the PHQ-8 self-report questionnaire (which taps depressive symptom severity), and on EMA of mood and various other clinically relevant factors. Both measures were administered during treatment, which lasted between 9 to 16 weeks. Results: E-COMPARED trial data revealed different individual improvement patterns: PHQ-8 scores suggested that some individuals improved quickly during the first weeks of the treatment, while others improved at a (much) slower pace, or not at all. Combining self-reported Ecological Momentary Assessments (EMA), PHQ-8 scores and log data about the usage of the ICT4D platform in the context of blended care, we set out to unveil possible causes for these different trajectories. Discussion: This work complements other studies into alternative data mining approaches to E-COMPARED trial data analysis, which are all aimed to identify clinically meaningful predictors of system use and treatment outcome. Strengths and limitations of the ILP approach given this objective will be discussed.

2018

On the Fly Reporting of Human Body Movement based on Kinect v2

Autores
Rodrigues, J; Maia, P; Choupina, HMP; Cunha, JPS;

Publicação
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS

Abstract
Human gait analysis is of utmost importance in understanding several aspects of human movement. In clinical practice, characterizing movement in order to obtain accurate and reliable information is a major challenge, and physicians usually rely on direct observation in order to evaluate a patient's motor abilities. In this contribution, a system that can objectively analyze the patients gait and generate an on the fly, targeted and optimized gait analysis report is presented. It is an extension to an existing system that could be used without interfering with the healthcare environment, which did not provide any on the fly feedback to physicians. Patient data are acquired using Kinect v2, followed by data processing, gait specific feature extraction, ending with the generation of a quantitative on the fly report. To the best of our knowledge, the complete system fills the gap as a proper gait analysis system, i.e., a low-cost tool that can be applied without interfering with the healthcare environment, provide quantitative gait information and on the fly feedback to physicians through a motion quantification report that can be useful in multiple areas. © 2018 IEEE.

2018

End-to-End Adversarial Retinal Image Synthesis

Autores
Costa, P; Galdran, A; Meyer, MI; Niemeijer, M; Abramoff, M; Mendonca, AM; Campilho, A;

Publicação
IEEE TRANSACTIONS ON MEDICAL IMAGING

Abstract
In medical image analysis applications, the availability of the large amounts of annotated data is becoming increasingly critical. However, annotated medical data is often scarce and costly to obtain. In this paper, we address the problem of synthesizing retinal color images by applying recent techniques based on adversarial learning. In this setting, a generative model is trained to maximize a loss function provided by a second model attempting to classify its output into real or synthetic. In particular, we propose to implement an adversarial autoencoder for the task of retinal vessel network synthesis. We use the generated vessel trees as an intermediate stage for the generation of color retinal images, which is accomplished with a generative adversarial network. Both models require the optimization of almost everywhere differentiable loss functions, which allows us to train them jointly. The resulting model offers an end-to-end retinal image synthesis system capable of generating as many retinal images as the user requires, with their corresponding vessel networks, by sampling from a simple probability distribution that we impose to the associated latent space. We show that the learned latent space contains a well-defined semantic structure, implying that we can perform calculations in the space of retinal images, e.g., smoothly interpolating new data points between two retinal images. Visual and quantitative results demonstrate that the synthesized images are substantially different from those in the training set, while being also anatomically consistent and displaying a reasonable visual quality.

2018

Parametric model fitting-based approach for retinal blood vessel caliber estimation in eye fundus images

Autores
Araujo, T; Mendonca, AM; Campilho, A;

Publicação
PLOS ONE

Abstract
Background Changes in the retinal vessel caliber are associated with a variety of major diseases, namely diabetes, hypertension and atherosclerosis. The clinical assessment of these changes in fundus images is tiresome and prone to errors and thus automatic methods are desirable for objective and precise caliber measurement. However, the variability of blood vessel appearance, image quality and resolution make the development of these tools a non-trivial task. Metholodogy A method for the estimation of vessel caliber in eye fundus images via vessel cross-sectional intensity profile model fitting is herein proposed. First, the vessel centerlines are determined and individual segments are extracted and smoothed by spline approximation. Then, the corresponding cross-sectional intensity profiles are determined, post-processed and ultimately fitted by newly proposed parametric models. These models are based on Difference-of-Gaussians (DoG) curves modified through a multiplying line with varying inclination. With this, the proposed models can describe profile asymmetry, allowing a good adjustment to the most difficult profiles, namely those showing central light reflex. Finally, the parameters of the best-fit model are used to determine the vessel width using ensembles of bagged regression trees with random feature selection. Results and conclusions The performance of our approach is evaluated on the REVIEW public dataset by comparing the vessel cross-sectional profile fitting of the proposed modified DoG models with 7 and 8 parameters against a Hermite model with 6 parameters. Results on different goodness of fitness metrics indicate that our models are constantly better at fitting the vessel profiles. Furthermore, our width measurement algorithm achieves a precision close to the observers, outperforming state-of-the art methods, and retrieving the highest precision when evaluated using cross-validation. This high performance supports the robustness of the algorithm and validates its use in retinal vessel width measurement and possible integration in a system for retinal vasculature assessment.

  • 61
  • 113