Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por BIO

2017

Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: A focused survey

Autores
Ahmedt Aristizabal, D; Fookes, C; Dionisio, S; Nguyen, K; Cunha, JPS; Sridharan, S;

Publicação
EPILEPSIA

Abstract
Epilepsy being one of the most prevalent neurological disorders, affecting approximately 50 million people worldwide, and with almost 30-40% of patients experiencing partial epilepsy being nonresponsive to medication, epilepsy surgery is widely accepted as an effective therapeutic option. Presurgical evaluation has advanced significantly using noninvasive techniques based on video monitoring, neuroimaging, and electrophysiological and neuropsychological tests; however, certain clinical settings call for invasive intracranial recordings such as stereoelectroencephalography (SEEG), aiming to accurately map the eloquent brain networks involved during a seizure. Most of the current presurgical evaluation procedures focus on semiautomatic techniques, where surgery diagnosis relies immensely on neurologists' experience and their time-consuming subjective interpretation of semiology or the manifestations of epilepsy and their correlation with the brain's electrical activity. Because surgery misdiagnosis reaches a rate of 30%, and more than one-third of all epilepsies are poorly understood, there is an evident keen interest in improving diagnostic precision using computer-based methodologies that in the past few years have shown near-human performance. Among them, deep learning has excelled in many biological and medical applications, but has advanced insufficiently in epilepsy evaluation and automated understanding of neural bases of semiology. In this paper, we systematically review the automatic applications in epilepsy for human motion analysis, brain electrical activity, and the anatomoelectroclinical correlation to attribute anatomical localization of the epileptogenic network to distinctive epilepsy patterns. Notably, recent advances in deep learning techniques will be investigated in the contexts of epilepsy to address the challenges exhibited by traditional machine learning techniques. Finally, we discuss and propose future research on epilepsy surgery assessment that can jointly learn across visually observed semiologic patterns and recorded brain electrical activity.

2017

Adversarial Synthesis of Retinal Images from Vessel Trees

Autores
Costa, P; Galdran, A; Meyer, MI; Mendonça, AM; Campilho, A;

Publicação
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017

Abstract
Synthesizing images of the eye fundus is a challenging task that has been previously approached by formulating complex models of the anatomy of the eye. New images can then be generated by sampling a suitable parameter space. Here we propose a method that learns to synthesize eye fundus images directly from data. For that, we pair true eye fundus images with their respective vessel trees, by means of a vessel segmentation technique. These pairs are then used to learn a mapping from a binary vessel tree to a new retinal image. For this purpose, we use a recent image-to-image translation technique, based on the idea of adversarial learning. Experimental results show that the original and the generated images are visually different in terms of their global appearance, in spite of sharing the same vessel tree. Additionally, a quantitative quality analysis of the synthetic retinal images confirms that the produced images retain a high proportion of the true image set quality. © Springer International Publishing AG 2017.

2017

A Deep Neural Network for Vessel Segmentation of Scanning Laser Ophthalmoscopy Images

Autores
Meyer, MI; Costa, P; Galdran, A; Mendonça, AM; Campilho, A;

Publicação
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017

Abstract
Retinal vessel segmentation is a fundamental and well-studied problem in the retinal image analysis field. The standard images in this context are color photographs acquired with standard fundus cameras. Several vessel segmentation techniques have been proposed in the literature that perform successfully on this class of images. However, for other retinal imaging modalities, blood vessel extraction has not been thoroughly explored. In this paper, we propose a vessel segmentation technique for Scanning Laser Opthalmoscopy (SLO) retinal images. Our method adapts a Deep Neural Network (DNN) architecture initially devised for segmentation of biological images (U-Net), to perform the task of vessel segmentation. The model was trained on a recent public dataset of SLO images. Results show that our approach efficiently segments the vessel network, achieving a performance that outperforms the current state-of-the-art on this particular class of images. © Springer International Publishing AG 2017.

2017

Convolutional bag of words for diabetic retinopathy detection from eye fundus images

Autores
Costa, Pedro; Campilho, Aurelio;

Publicação
IPSJ Trans. Computer Vision and Applications

Abstract

2017

Automatic and semi-automatic approaches for arteriolar-to-venular computation in retinal photographs

Autores
Mendonca, AM; Remeseiro, B; Dashtbozorg, B; Campilho, A;

Publicação
MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS

Abstract
The Arteriolar-to-Venular Ratio (AVR) is a popular dimensionless measure which allows the assessment of patients' condition for the early diagnosis of different diseases, including hypertension and diabetic retinopathy. This paper presents two new approaches for AVR computation in retinal photographs which include a sequence of automated processing steps: vessel segmentation, caliber measurement, optic disc segmentation, artery/vein classification, region of interest delineation, and AVR calculation. Both approaches have been tested on the INSPIRE-AVR dataset, and compared with a ground-truth provided by two medical specialists. The obtained results demonstrate the reliability of the fully automatic approach which provides AVR ratios very similar to at least one of the observers. Furthermore, the semi-automatic approach, which includes the manual modification of the artery/vein classification if needed, allows to significantly reduce the error to a level below the human error.

2017

ICTAL VOCALIZATION IN FOCAL EPILEPSY

Autores
Hartl, E; Knoche, T; Remi, J; Choupina, H; Cunha, J; Noachtar, S;

Publicação
EPILEPSIA

Abstract

  • 74
  • 113