2016
Autores
Cunha, JPS; Choupina, HMP; Rocha, AP; Fernandes, JM; Achilles, F; Loesch, AM; Vollmar, C; Hartl, E; Noachtar, S;
Publicação
PLOS ONE
Abstract
Epilepsy is a common neurological disorder which affects 0.5-1% of the world population. Its diagnosis relies both on Electroencephalogram (EEG) findings and characteristic seizure -induced body movements - called seizure semiology. Thus, synchronous EEG and (2D) video recording systems (known as Video-EEG) are the most accurate tools for epilepsy diagnosis. Despite the establishment of several quantitative methods for EEG analysis, seizure semiology is still analyzed by visual inspection, based on epileptologists' subjective interpretation of the movements of interest (MOIs) that occur during recorded seizures. In this contribution, we present NeuroKinect, a low-cost, easy to setup and operate solution for a novel 3Dvideo-EEG system. It is based on a RGB-D sensor (Microsoft Kinect camera) and performs 24/7 monitoring of an Epilepsy Monitoring Unit (EMU) bed. It does not require the attachment of any reflectors or sensors to the patient's body and has a very low maintenance load. To evaluate its performance and usability, we mounted a state-of-the-art 6-camera motion-capture system and our low-cost solution over the same EMU bed. A comparative study of seizure-simulated MOIs showed an average correlation of the resulting 3D motion trajectories of 84.2%. Then, we used our system on the routine of an EMU and collected 9 different seizures where we could perform 3D kinematic analysis of 42 MOIs arising from the temporal (TLE) (n = 19) and extratemporal (ETE) brain regions (n = 23). The obtained results showed that movement displacement and movement extent discriminated both seizure MOI groups with statistically significant levels (mean = 0.15 m vs. 0.44 m, p<0.001; mean = 0.068 m(3) vs. 0.14 m(3), p< 0.05, respectively). Furthermore, TLE MOIs were significantly shorter than ETE (mean = 23 seconds vs 35 seconds, p< 0.01) and presented higher jerking levels (mean = 345 ms(-3) vs 172 ms(-3), p< 0.05). Our newly implemented 3D approach is faster by 87.5% in extracting body motion trajectories when compared to a 2D frame by frame tracking procedure. We conclude that this new approach provides a more comfortable (both for patients and clinical professionals), simpler, faster and lower-cost procedure than previous approaches, therefore providing a reliable tool to quantitatively analyze MOI patterns of epileptic seizures in the routine of EMUs around the world. We hope this study encourages other EMUs to adopt similar approaches so that more quantitative information is used to improve epilepsy diagnosis.
2016
Autores
Romano, RA; dos Santos, PL; Pait, F; Perdicoulis, TP;
Publicação
2016 IEEE CONFERENCE ON CONTROL APPLICATIONS (CCA)
Abstract
In this paper the nonparametric identification of state-space linear parameter-varying models with dynamic mapping between the scheduling signal and the model matrices is considered. Indeed, we are particularly interested on the problem of estimating a model using data generated from an LPV system with static dependence, which is however represented on a different state-basis from the one considered by the estimator.
2016
Autores
Romano, RA; dos Santos, PL; Pait, F; Perdicoulis, TP; Ramos, JA;
Publicação
2016 AMERICAN CONTROL CONFERENCE (ACC)
Abstract
In this paper an identification method for statespace LPV models is presented. The method is based on a particular parameterization that can be written in linear regression form and enables model estimation to be handled using Least-Squares Support Vector Machine (LS-SVM). The regression form has a set of design variables that act as filter poles to the underlying basis functions. In order to preserve the meaning of the Kernel functions (crucial in the LS-SVM context), these are filtered by a 2D-system with the predictor dynamics. A data-driven, direct optimization based approach for tuning this filter is proposed. The method is assessed using a simulated example and the results obtained are twofold. First, in spite of the difficult nonlinearities involved, the nonparametric algorithm was able to learn the underlying dependencies on the scheduling signal. Second, a significant improvement in the performance of the proposed method is registered, if compared with the one achieved by placing the predictor poles at the origin of the complex plane, which is equivalent to considering an estimator based on an LPV auto-regressive structure.
2016
Autores
Oliveira, JB; Boaventura Cunha, J; Moura Oliveira, PBM;
Publicação
OPTIMAL CONTROL APPLICATIONS & METHODS
Abstract
In this work, the feasibility of applying a Sliding Mode Predictive Controller (SMPC) to improve greenhouse inside air temperature control is addressed in terms of energy consumption, disturbance handling and set point tracking accuracy. Major research issues addressed concern the SMPC robustness study in greenhouse control, as well as to evaluate if the levels of performance and energy consumptions are acceptable when compared with the traditional generalized predictive controller. Besides the external disturbances related to weather conditions throughout the considered period, such as solar radiation and temperature variations, internal effects of irrigation system and external air flow entering the greenhouse must be taken into account. Simulations based on real data, carried out for a period of 4months, suggest that the strategy herein described not only appropriately rejects these disturbances, but also keeps the manipulated variables (heating and cooling) within feasible practical limits, with low levels of energy consumption, motivating its refinement for real application. SMPC results are presented and compared with the ones obtained with the generalized predictive controller. Both controllers are subject to actuator constraints and employ the Quadratic Programming for optimization. Copyright (c) 2015 John Wiley & Sons, Ltd.
2016
Autores
Goncalves, L; Novo, J; Campilho, A;
Publicação
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
In the design of computer-aided diagnosis systems for lung cancer diagnosis, an appropriate and accurate segmentation of the pulmonary nodules in computerized tomography (CT) is one of the most relevant and difficult tasks. An accurate segmentation is crucial for the posterior measurement of nodule characteristics and for lung cancer diagnosis. This paper proposes different approaches that use Hessian-based strategies for lung nodule segmentation in chest CT scans. We propose a multiscale segmentation process that uses the central medialness adaptive principle, a Hessian-based strategy that was originally formulated for tubular extraction but it also provides good segmentation results in blob-like structures as is the case of lung nodules. We compared this proposal with a well established Hessian-based strategy that calculates the Shape Index (SI) and Curvedness (CV). We adapted the SI and CV approach for multiscale nodule segmentation. Moreover, we propose the combination of both strategies by combining the results, in order to take benefit of the advantages of both strategies. Different cases with pulmonary nodules from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) database were taken and used to analyze and validate the approaches. The chest CT images present a large variability in nodule characteristics and image conditions. Our proposals provide an accurate lung nodule segmentation, similar to radiologists performance. Our Hessian-based approaches were validated with 569 solid and mostly solid nodules demonstrating that these novel strategies have good results when compared with the radiologists segmentations, providing accurate pulmonary nodule volumes for posterior characterization and appropriate diagnosis.
2016
Autores
Alves Rodrigues, I; Ferreira, PG; Moldon, A; Vivancos, AP; Hidalgo, E; Guigo, R; Ayte, J;
Publicação
CELL REPORTS
Abstract
Meiosis is a differentiated program of the cell cycle that is characterized by high levels of recombination followed by two nuclear divisions. In fission yeast, the genetic program during meiosis is regulated at multiple levels, including transcription, mRNA stabilization, and splicing. Mei4 is a forkhead transcription factor that controls the expression of mid-meiotic genes. Here, we describe that Fkh2, another forkhead transcription factor that is essential for mitotic cell-cycle progression, also plays a pivotal role in the control of meiosis. Fkh2 binding preexists in most Mei4-dependent genes, inhibiting their expression. During meiosis, Fkh2 is phosphorylated in a CDK/Cig2-dependent manner, decreasing its affinity for DNA, which creates a window of opportunity for Mei4 binding to its target genes. We propose that Fkh2 serves as a placeholder until the later appearance of Mei4 with a higher affinity for DNA that induces the expression of a subset of meiotic genes.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.