Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2024

Fuzzy Super-Twisting Sliding Mode Controller for Switched Reluctance Wind Power Generator in Low-Voltage DC Microgrid Applications

Autores
Touati, Z; Mahmoud, I; Araujo, RE; Khedher, A;

Publicação
ENERGIES

Abstract
There is limited research focused on achieving optimal torque control performance of Switched Reluctance Generators (SRGs). The majority of existing studies tend to favor voltage or power control strategies. However, a significant drawback of SRGs is their susceptibility to high torque ripple. In power generation systems, torque ripple implicates fluctuations in the generated power of the generator. Moreover, high torque ripple can lead to mechanical vibrations and noise in the powertrain, impacting the overall system performance. In this paper, a Torque Sharing Function (TSF) with Indirect Instantaneous Torque Control (IITC) for SRG applied to Wind Energy Conversion Systems (WECS) is proposed to minimize torque ripple. The proposed method adjusts the shared reference torque function between the phases based on instantaneous torque, rather than the existing TSF methods formulated with a mathematical expression. Additionally, this paper introduces an innovative speed control scheme for SRG drive using a Fuzzy Super-Twisting Sliding Mode Command (FSTSMC) method. Notably robust against parameter uncertainties and payload disturbances, the proposed scheme ensures finite-time convergence even in the presence of external disturbances, while effectively reducing chattering. To assess the effectiveness of the proposed methods, comprehensive comparisons are made with traditional control techniques, including Proportional-Integral (PI), Integral Sliding Mode Control (ISMC), and Super-Twisting Sliding Mode Control (STSMC). The simulation results, obtained using MATLAB (R)/SIMULINK (R) under various speeds and mechanical torque conditions, demonstrate the superior performance and robustness of the proposed approaches. This study presents a thorough experimental analysis of a 250 W four-phase 8/6 SRG. The generator was connected to a DC resistive load, and the analysis focuses on assessing its performance and operational characteristics across different rotational speeds. The primary objective is to validate and confirm the efficacy of the SRG under varying conditions.

2024

Guest Editorial Introduction to the Special Section on Next Generation Zero-Emission Vehicles

Autores
de Castro, R; Moura, S; Esteves, RE; Corzine, K;

Publicação
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

Abstract
This special section features extended versions of papers originally published in the 2022 IEEE Vehicle Power and Propulsion Conference (VPPC22), hosted by the University of California, Merced, USA. This was the first time that the VPPC took place in California, USA. It was a timely visit. California recently announced that only zero-emission vehicles (ZEVs) will be allowed to be sold in the state by 2035. Other states and countries will surely follow. The VPPC, as one of the pioneer forums dedicated to electric mobility, is in a privileged position to create and disseminate knowledge that will help our communities transition toward sustainable transportation, improving air quality and reducing greenhouse emissions.

2024

A Practical Methodology for Real-Time Adjustment of Kalman Filter Process Noise for Lithium Battery State-of-Charge Estimation

Autores
da Silva, CT; Dias, BMD; Araújo, RE; Pellini, EL; Laganá, AAM;

Publicação
BATTERIES-BASEL

Abstract
The methodology presented in this work allows for the creation of a real-time adjustment of Kalman Filter process noise for lithium battery state-of-charge estimation. This work innovates by creating a methodology for adjusting the process (Q) and measurement (R) Kalman Filter noise matrices in real-time. The filter algorithm with this adaptative mechanism achieved an average accuracy of 99.56% in real tests by comparing the estimated battery voltage and measured battery voltage. A cell-balancing strategy was also implemented, capable of guaranteeing the safety and efficiency of the battery pack in all conducted tests. This work presents all the methods, equations, and simulations necessary for the development of a battery management system and applies the system in a practical, real environment. The battery management system hardware and firmware were developed, evaluated, and validated on a battery pack with eight LiFePO4 cells, achieving excellent performance on all conducted tests.

2024

Multi-objective planning of community energy storage systems under uncertainty

Autores
Anuradha, K; Iria, J; Mediwaththe, CP;

Publicação
Electric Power Systems Research

Abstract

2024

Shaped operating envelopes: Distribution network capacity allocation for market services

Autores
Attarha, A; Noori R.A., SM; Mahmoodi, M; Iria, J; Scott, P;

Publicação
Electric Power Systems Research

Abstract

2024

Network-secure aggregator operating regions with flexible dispatch envelopes in unbalanced systems

Autores
Russell, JS; Scott, P; Iria, J;

Publicação
Electric Power Systems Research

Abstract

  • 9
  • 330