Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Manuel Barbosa

2020

Universally Composable Relaxed Password Authenticated Key Exchange

Autores
Abdalla, M; Barbosa, M; Bradley, T; Jarecki, S; Katz, J; Xu, J;

Publicação
IACR Cryptol. ePrint Arch.

Abstract

2018

Indifferentiable Authenticated Encryption

Autores
Barbosa, M; Farshim, P;

Publicação
IACR Cryptology ePrint Archive

Abstract

2017

Labeled Homomorphic Encryption: Scalable and Privacy-Preserving Processing of Outsourced Data

Autores
Barbosa, Manuel; Catalano, Dario; Fiore, Dario;

Publicação
IACR Cryptology ePrint Archive

Abstract

2017

Secure Multiparty Computation from SGX

Autores
Bahmani, R; Barbosa, M; Brasser, F; Portela, B; Sadeghi, AR; Scerri, G; Warinschi, B;

Publicação
Financial Cryptography and Data Security - 21st International Conference, FC 2017, Sliema, Malta, April 3-7, 2017, Revised Selected Papers

Abstract
In this paper we show how Isolated Execution Environments (IEE) offered by novel commodity hardware such as Intel’s SGX provide a new path to constructing general secure multiparty computation (MPC) protocols. Our protocol is intuitive and elegant: it uses code within an IEE to play the role of a trusted third party (TTP), and the attestation guarantees of SGX to bootstrap secure communications between participants and the TTP. The load of communications and computations on participants only depends on the size of each party’s inputs and outputs and is thus small and independent from the intricacies of the functionality to be computed. The remaining computational load– essentially that of computing the functionality – is moved to an untrusted party running an IEE-enabled machine, an attractive feature for Cloud-based scenarios. Our rigorous modular security analysis relies on the novel notion of labeled attested computation which we put forth in this paper. This notion is a convenient abstraction of the kind of attestation guarantees one can obtain from trusted hardware in multi-user scenarios. Finally, we present an extensive experimental evaluation of our solution on SGX-enabled hardware. Our implementation is open-source and it is functionality agnostic: it can be used to securely outsource to the Cloud arbitrary off-the-shelf collaborative software, such as the one employed on financial data applications, enabling secure collaborative execution over private inputs provided by multiple parties. © 2017, International Financial Cryptography Association.

2023

Formally verifying Kyber Episode IV: Implementation correctness

Autores
Almeida, JB; Barbosa, M; Barthe, G; Grégoire, B; Laporte, V; Léchenet, JC; Oliveira, T; Pacheco, H; Quaresma, M; Schwabe, P; Séré, A; Strub, PY;

Publicação
IACR Trans. Cryptogr. Hardw. Embed. Syst.

Abstract
In this paper we present the first formally verified implementations of Kyber and, to the best of our knowledge, the first such implementations of any post-quantum cryptosystem. We give a (readable) formal specification of Kyber in the EasyCrypt proof assistant, which is syntactically very close to the pseudocode description of the scheme as given in the most recent version of the NIST submission. We present high-assurance open-source implementations of Kyber written in the Jasmin language, along with machine-checked proofs that they are functionally correct with respect to the EasyCrypt specification. We describe a number of improvements to the EasyCrypt and Jasmin frameworks that were needed for this implementation and verification effort, and we present detailed benchmarks of our implementations, showing that our code achieves performance close to existing hand-optimized implementations in C and assembly.

2021

Machine-checked ZKP for NP-relations: Formally Verified Security Proofs and Implementations of MPC-in-the-Head

Autores
Almeida, JB; Barbosa, M; Correia, ML; Eldefrawy, K; Lengrand, SG; Pacheco, H; Pereira, V;

Publicação
IACR Cryptol. ePrint Arch.

Abstract

  • 17
  • 20