Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRACS

2024

NAVIGATING THE SHIFTING LANDSCAPE OF TEACHER PROFESSIONALITY IN PORTUGUESE HIGHER EDUCATION: A CASE STUDY

Autores
Cruz, M; Mascarenhas, D; Queirós, R; Pinto, C;

Publicação
EDULEARN Proceedings - EDULEARN24 Proceedings

Abstract

2024

Client-Side Gamification Engine for Enhanced Programming Learning

Autores
Queirós, R; Damasevicius, R; Maskeliunas, R; Swacha, J;

Publicação
5th International Computer Programming Education Conference, ICPEC 2024, June 27-28, 2024, Lisbon, Portugal

Abstract
This study introduces the development of a client-based software layer within the FGPE project, aimed at enhancing the usability of the FGPE programming learning environment through client-side processing. The primary goal is to enable the evaluation of programming exercises and the application of gamification rules directly on the client-side, thereby facilitating offline functionality. This approach is particularly beneficial in regions with unreliable internet connectivity, as it allows continuous student interaction and feedback without the need for a constant server connection. The implementation promises to reduce server load significantly by shifting the evaluation workload to the client-side. This not only improves response times but also alleviates the burden on server resources, enhancing overall system efficiency. Two main strategies are explored: 1) caching the gamification service interface on the client-side, and 2) implementing a complete client-side gamification service that synchronizes with the server when online. Each approach is evaluated in terms of its impact on user experience, system performance, and potential security concerns. The findings suggest that while client-side processing offers considerable benefits in terms of scalability and user engagement, it also introduces challenges such as increased system complexity and potential data synchronization issues. The study concludes with recommendations for balancing these factors to optimize the design and implementation of client-based systems for educational environments. © Ricardo Queirós, Robertas Damaševicius, Rytis Maskeliunas, and Jakub Swacha;

2024

Exercisify: An AI-Powered Statement Evaluator

Autores
Queirós, R;

Publicação
5th International Computer Programming Education Conference, ICPEC 2024, June 27-28, 2024, Lisbon, Portugal

Abstract
A growing concern with current teaching approaches underscores the need for innovative paradigms and tools in computer programming education, aiming to address disparate user profiles, enhance engagement, and cultivate deeper understanding among learners This article proposes an innovative approach to teaching programming, where students are challenged to write statements for solutions automatically generated. With this approach, rather than simply solving exercises, students are encouraged to develop code analysis and problem formulation skills. For this purpose, a Web application was developed to materialize these ideas, using the OpenAI API to generate exercises and evaluate statements written by the students. The transformation of this application in H5P and its integration in a LMS gamified workflow is explored for wider and more effective adoption. © Ricardo Queirós;

2024

Exploring HEIs Students' Perceptions of Artificial Intelligence on their Learning Process

Autores
Babo, L; Mendonca, MP; Queiros, R; Pinto, MA; Cruz, M; Mascarenhas, D;

Publicação
EEITE 2024 - Proceedings of 2024 5th International Conference in Electronic Engineering, Information Technology and Education

Abstract
An increasing number of colleges and universities are introducing Generative Artificial Intelligence (GAI) in their teaching/learning frameworks. This study examines the feedback from 152 students across Higher Education Institutions (HEIs), representing diverse scientific areas, namely Engineering, Lit-erature, Business and Accounting, Sports. It aims to explore the integration of GAI features in education and students' perception on its advantages and disadvantages. Students' top benefit was 'Personalized learning'. They also valued 'efficient content creation', and 'individualized assessment tools'. Their major concern was 'Ethical considerations', and it varied by demographic variables. Other distresses included 'Lack of control of content creation', 'over-reliance', and 'AI depersonalization', and 'decreased interpersonal engagement'. Of utmost important conclusion is that HE students agree and strongly agree that AI came to disrupt HEIs' educational process. © 2024 IEEE.

2024

Leveraging Large Language Models to Support Authoring Gamified Programming Exercises

Autores
Montella, R; De Vita, CG; Mellone, G; Ciricillo, T; Caramiello, D; Di Luccio, D; Kosta, S; Damasevicius, R; Maskeliunas, R; Queirós, R; Swacha, J;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Featured Application The presented solution can be applied to simplify and hasten the development of gamified programming exercises conforming to the Framework for Gamified Programming Education (FGPE) standard.Abstract Skilled programmers are in high demand, and a critical obstacle to satisfying this demand is the difficulty of acquiring programming skills. This issue can be addressed with automated assessment, which gives fast feedback to students trying to code, and gamification, which motivates them to intensify their learning efforts. Although some collections of gamified programming exercises are available, producing new ones is very demanding. This paper presents GAMAI, an AI-powered exercise gamifier, enriching the Framework for Gamified Programming Education (FGPE) ecosystem. Leveraging large language models, GAMAI enables teachers to effortlessly apply storytelling to describe a gamified scenario, as GAMAI decorates natural language text with the sentences needed by OpenAI APIs to contextualize the prompt. Once a gamified scenario has been generated, GAMAI automatically produces exercise files in a FGPE-compatible format. According to the presented evaluation results, most gamified exercises generated with AI support were ready to be used, with no or minimum human effort, and were positively assessed by students. The usability of the software was also assessed as high by the users. Our research paves the way for a more efficient and interactive approach to programming education, leveraging the capabilities of advanced language models in conjunction with gamification principles.

2024

HEIs teachers' and students' current experience of AI introduction in teaching and learning

Autores
Pinto, MA; Mendonca, MP; Babo, L; Queiros, R; Cruz, M; Mascarenhas, D;

Publicação
EEITE 2024 - Proceedings of 2024 5th International Conference in Electronic Engineering, Information Technology and Education

Abstract
Higher Education Institutions (HEIs) are increasingly incorporating artificial i ntelligence (AI) into their learning setup. In this paper, we analyze the results of a survey posed to 152 Higher Education (HE) students and 136 HE educators, of different scientific b ackgrounds, to emphasize the current incorporation of AI in the teaching and learning processes. The results reveal distinct viewpoints from both parties, reflecting diversified l evels o f e xperience, presumptions, and uneasiness. Thirty two percent of the teachers, completing the survey, confirms using AI. Approximately 50% reveal they notice their students using AI to (i) automate routine tasks in or out-ofclass, including check correctness of answers, obtaining real-time feedback; (ii) personalize learning tasks, such as write essays or projects and to illustrate them, and create presentations. A smaller percentage reveals students using AI to produce video content and contrast information learned in class. Alternative means, encompassing using AI at home, to study, to gather information, to sum up ideas in texts, are identified by most teachers as being employed by their students. Students using AI outnumber the teachers, though there are significant d ifferences in some responses, when compared to the teachers' perceptions, for the sames questions. Most of the students prefer AI to study at home, to obtain information to improve or to check an answer. Then a significant number does not exploit AI either to create presentations, write an essay or project, illustrate a project, producing videos, or to contrast information obtained in classes with that collected by AI tools. Regardless of these differences, both parties agree and strongly agree (with 79% of students and 86% of teachers) that AI will affect the HEIs educational process in the future. © 2024 IEEE.

  • 6
  • 200