2023
Autores
Paiva, JC; Figueira, A; Leal, JP;
Publicação
LEARNING TECHNOLOGIES AND SYSTEMS, ICWL 2022, SETE 2022
Abstract
Over the years, several systematic literature reviews have been published reporting advances in tools and techniques for automated assessment in Computer Science. However, there is not yet a major bibliometric study that examines the relationships and influence of publications, authors, and journals to make these research trends visible. This paper presents a bibliometric study of automated assessment of programming exercises, including a descriptive analysis using various bibliometric measures and data visualizations. The data was collected from the Web of Science Core Collection. The obtained results allow us to identify the most influential authors and their affiliations, monitor the evolution of publications and citations, establish relationships between emerging themes in publications, discover research trends, and more. This paper provides a deeper knowledge of the literature and facilitates future researchers to start in this field.
2023
Autores
Neto, J; Morais, AJ; Gonçalves, R; Coelho, AL;
Publicação
BUILDINGS
Abstract
Fires in large buildings can have tragic consequences, including the loss of human lives. Despite the advancements in building construction and fire safety technologies, the unpredictable nature of fires, particularly in large buildings, remains an enormous challenge. Acknowledging the paramount importance of prioritising human safety, the academic community has been focusing consistently on enhancing the efficiency of building evacuation. While previous studies have integrated evacuation simulation models, aiding in aspects such as the design of evacuation routes and emergency signalling, modelling human behaviour during a fire emergency remains challenging due to cognitive complexities. Moreover, behavioural differences from country to country add another layer of complexity, hindering the creation of a universal behaviour model. Instead of centring on modelling the occupant behaviour, this paper proposes an innovative approach aimed at enhancing the occupants' behaviour predictability by providing real-time information to the occupants regarding the most suitable evacuation routes. The proposed models use a building's environmental conditions to generate contextual information, aiding in developing solutions to make the occupants' behaviour more predictable by providing them with real-time information on the most appropriate and efficient evacuation routes at each moment, guiding the occupants to safety during a fire emergency. The models were incorporated into a context-aware recommender system for testing purposes. The simulation results indicate that such a system, coupled with hazard and congestion models, positively influences the occupants' behaviour, fostering faster adaptation to the environmental conditions and ultimately enhancing the efficiency of building evacuations.
2023
Autores
Silva, VF; Silva, ME; Ribeiro, P; Silva, FMA;
Publicação
CoRR
Abstract
2023
Autores
Abreu, N; Pinto, A; Matos, A; Pires, M;
Publicação
Iberian Conference on Information Systems and Technologies, CISTI
Abstract
Precise construction progress monitoring has been shown to be an essential step towards the successful management of a building project. However, the methods for automated construction progress monitoring proposed in previous work have certain limitations because of inefficient and unrobust point cloud processing. The main objective of this research was to develop an accurate automated method for construction progress monitoring using a 4D BIM together with a 3D point cloud obtained using a terrestrial laser scanner. The proposed method consists of four phases: point cloud simplification, alignment of the as-built data with the as-planned model, classification of the as-built data according to the BIM elements, and estimation of the progress. The accuracy and robustness of the proposed methodology was validated using a known dataset. The developed application can be used for construction progress visualization and analysis. © 2023 ITMA.
2023
Autores
Oliveira, B; Lopes, CT;
Publicação
Proceedings of the 2023 Conference on Human Information Interaction and Retrieval, CHIIR 2023, Austin, TX, USA, March 19-23, 2023
Abstract
Web search engines have marked everyone's life by transforming how one searches and accesses information. Search engines give special attention to the user interface, especially search engine result pages (SERP). The well-known "10 blue links"list has evolved into richer interfaces, often personalized to the search query, the user, and other aspects. More than 20 years later, the literature has not adequately portrayed this development. We present a study on the evolution of SERP interfaces during the last two decades using Google Search as a case study. We used the most searched queries by year to extract a sample of SERP from the Internet Archive. Using this dataset, we analyzed how SERP evolved in content, layout, design (e.g., color scheme, text styling, graphics), navigation, and file size. We have also analyzed the user interface design patterns associated with SERP elements. We found that SERP are becoming more diverse in terms of elements, aggregating content from different verticals and including more features that provide direct answers. This systematic analysis portrays evolution trends in search engine user interfaces and, more generally, web design. We expect this work will trigger other, more specific studies that can take advantage of our dataset.
2023
Autores
Albuquerque, C; Correia, FF;
Publicação
Proceedings of the 28th European Conference on Pattern Languages of Programs, EuroPLoP 2023, Irsee, Germany, July 5-9, 2023
Abstract
Monitoring a system over time is as important as ever with the increasing use of cloud-native software architectures. This paper expands the set of patterns published in a previous paper (Liveness Endpoint, Readiness Endpoint and Synthetic Testing) with two solutions for supporting teams in diagnosing occurring issues — Deployment Tracking and Exception Tracking. These patterns advise tracking relevant events that occur in the system. The Deployment Tracking pattern provides means to limit the sources of an anomaly, and the Exception Tracking pattern makes a specific class of anomalies visible so that a team can act on them. Both patterns help practitioners identify the root cause of an issue, which is instrumental in fixing it. They can help even less experienced professionals to improve monitoring processes, and reduce the mean time to resolve problems with their application. These patterns draw on documented industry best practices and existing tools. In order to help the reader find other patterns that supplement the ones suggested in this study, relations to already-existing monitoring patterns are also examined. © 2023 Copyright held by the owner/author(s).
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.