Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRAS

2024

LiDAR-Based Unmanned Aerial Vehicle Offshore Wind Blade Inspection and Modeling

Autores
Oliveira, A; Dias, A; Santos, T; Rodrigues, P; Martins, A; Almeida, J;

Publicação
DRONES

Abstract
The deployment of offshore wind turbines (WTs) has emerged as a pivotal strategy in the transition to renewable energy, offering significant potential for clean electricity generation. However, these structures' operation and maintenance (O&M) present unique challenges due to their remote locations and harsh marine environments. For these reasons, it is fundamental to promote the development of autonomous solutions to monitor the health condition of the construction parts, preventing structural damage and accidents. This paper explores the application of Unmanned Aerial Vehicles (UAVs) in the inspection and maintenance of offshore wind turbines, introducing a new strategy for autonomous wind turbine inspection and a simulation environment for testing and training autonomous inspection techniques under a more realistic offshore scenario. Instead of relying on visual information to detect the WT parts during the inspection, this method proposes a three-dimensional (3D) light detection and ranging (LiDAR) method that estimates the wind turbine pose (position, orientation, and blade configuration) and autonomously controls the UAV for a close inspection maneuver. The first tests were carried out mainly in a simulation framework, combining different WT poses, including different orientations, blade positions, and wind turbine movements, and finally, a mixed reality test, where a real vehicle performed a full inspection of a virtual wind turbine.

2024

Robotic data recovery from seabed with optical high-bandwidth communication from a deep-sea lander

Autores
Almeida, J; Soares, E; Almeida, C; Matias, B; Pereira, R; Sytnyk, D; Silva, P; Ferreira, A; Machado, D; Martins, P; Martins, A;

Publicação
OCEANS 2024 - SINGAPORE

Abstract
This paper addresses the problem of high-bandwidth communication and data recovery from deep-sea semi-permanent robotic landers. These vehicles are suitable for long-term monitoring of underwater activities and to support the operation of other robotic assets in Operation & Maintenance (O&M) of offshore renewables. Limitations of current communication solutions underwater deny the immediate transmission of the collected data to the surface, which is alternatively stored locally inside each lander. Therefore, data recovery often implies the interruption of the designated tasks so that the vehicle can return to the surface and transmit the collected data. Resorting to a short-range and high-bandwidth optical link, an alternative underwater strategy for flexible data exchange is presented. It involves the usage of an AUV satellite approaching each underwater node until an optical communication channel is established. At this point, high-bandwidth communication with the remote lander becomes available, offering the possibility to perform a variety of operations, including the download of previously recorded information, the visualisation of video streams from the lander on-board cameras, or even performing remote motion control of the lander. All these three operations were tested and validated with the experimental setup reported here. The experiments were performed in the Atlantic Ocean, at Setubal underwater canyon, reaching the operation depth of 350m meters. Two autonomous robotic platforms were used in the experiments, namely the TURTLE3 lander and the EVA Hybrid Autonomous Underwater Vehicle. Since EVA kept a tether fibre optic connection to the Mar Profundo support vessel, it was possible to establish a full communication chain between a landbased control centre and the remote underwater nodes.

2024

Man-Machine Symbiosis UAV Integration for Military Search and Rescue Operations

Autores
Minhoto, V; Santos, T; Silva, LTE; Rodrigues, P; Arrais, A; Amaral, A; Dias, A; Almeida, J; Cunha, JPS;

Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2

Abstract
Over the last few years, Man-Machine collaborative systems have been increasingly present in daily routines. In these systems, one operator usually controls the machine through explicit commands and assesses the information through a graphical user interface. Direct & implicit interaction between the machine and the user does not exist. This work presents a man-machine symbiotic concept & system where such implicit interaction is possible targeting search and rescue scenarios. Based on measuring physiological variables (e.g. body movement or electrocardiogram) through wearable devices, this system is capable of computing the psycho-physiological state of the human and autonomously identify abnormal situations (e.g. fall or stress). This information is injected into the control loop of the machine that can alter its behavior according to it, enabling an implicit man-machine communication mechanism. A proof of concept of this system was tested at the ARTEX (ARmy Technological EXperimentation) exercise organized by the Portuguese Army involving a military agent and a drone. During this event the soldier was equipped with a kit of wearables that could monitor several physiological variables and automatically detect a fall during a mission. This information was continuously sent to the drone that successfully identified this abnormal situation triggering the take-off and a situation awareness fly-by flight pattern, delivering a first-aid kit to the soldier in case he did not recover after a pre-determined time period. The results were very positive, proving the possibility and feasibility of a symbiotic system between humans and machines.

2024

Novel Approach for Offshore Photovoltaic Panels Inspection with VTOL UAV

Autores
Morais, R; Martins, JJ; Lima, P; Dias, A; Martins, A; Almeida, J; Silva, E;

Publicação
OCEANS 2024 - SINGAPORE

Abstract
Solar energy will contribute to global economic growth, increasing worldwide photovoltaic (PV) solar energy production. More recently, one of the outstanding energy achievements of the last decade has been the development of floating photovoltaic panels. These panels differ from conventional (terrestrial) panels because they occupy space in a more environmentally friendly way, i.e., aquatic areas. In contrast, land areas are saved for other applications, such as construction or agriculture. Developing autonomous inspection systems using unmanned aerial vehicles (UAVs) represents a significant step forward in solar PV technology. Given the frequently remote and difficult-to-access locations, traditional inspection methods are no longer practical or suitable. Responding to these challenges, an innovative inspection framework was developed to autonomously inspect photovoltaic plants (offshore) with a Vertical Takeoff and Landing (VTOL) UAV. This work explores two different methods of autonomous aerial inspection, each adapted to specific scenarios, thus increasing the adaptability of the inspection process. During the flight, the aerial images are evaluated in real-time for the autonomous detection of the photovoltaic modules and the detection of possible faults. This mechanism is crucial for making decisions and taking immediate corrective action. An offshore simulation environment was developed to validate the implemented system.

2024

The SAIL dataset of marine atmospheric electric field observations over the Atlantic Ocean

Autores
Barbosa, S; Dias, N; Almeida, C; Amaral, G; Ferreira, A; Camilo, A; Silva, E;

Publicação

Abstract
Abstract. A unique dataset of marine atmospheric electric field observations over the Atlantic Ocean is described. The data are relevant not only for atmospheric electricity studies, but more generally for studies of the Earth's atmosphere and climate variability, as well as space-earth interactions studies. In addition to the atmospheric electric field data, the dataset includes simultaneous measurements of other atmospheric  variables, including gamma radiation, visibility, and solar radiation. These ancillary observations not only support interpretation and understanding of the atmospheric electric field data, but are also of interest in themselves. The entire framework from data collection to final derived datasets has been duly documented to ensure traceability and reproducibility of the whole data curation chain. All the data, from raw measurements to final datasets, are preserved in data repositories with a corresponding assigned DOI. Final datasets are available from the Figshare repository (https://figshare.com/projects/SAIL_Data/178500) and computational notebooks containing the code used at every step of the data curation chain are available from the Zenodo repository (https://zenodo.org/communities/sail).

2024

A Preliminary Study on Spectral Unmixing for Marine Plastic Debris Surveying

Autores
Maravalhas-Silva, J; Silva, H; Lima, AP; Silva, E;

Publicação
OCEANS 2024 - SINGAPORE

Abstract
We present a pilot study where spectral unmixing is applied to hyperspectral images captured in a controlled environment with a threefold purpose in mind: validation of our experimental setup, of the data processing pipeline, and of the usage of spectral unmixing algorithms for the aforementioned research avenue. Results from this study show that classical techniques such as VCA and FCLS can be used to distinguish between plastic and nonplastic materials, but struggle significantly to distinguish between spectrally similar plastics, even in the presence of multiple pure pixels.

  • 5
  • 175