Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CSE

2021

A survey of privacy-preserving mechanisms for heterogeneous data types

Autores
Cunha, M; Mendes, R; Vilela, JP;

Publicação
COMPUTER SCIENCE REVIEW

Abstract
Due to the pervasiveness of always connected devices, large amounts of heterogeneous data are continuously being collected. Beyond the benefits that accrue for the users, there are private and sensitive information that is exposed. Therefore, Privacy-Preserving Mechanisms (PPMs) are crucial to protect users' privacy. In this paper, we perform a thorough study of the state of the art on the following topics: heterogeneous data types, PPMs, and tools for privacy protection. Building from the achieved knowledge, we propose a privacy taxonomy that establishes a relation between different types of data and suitable PPMs for the characteristics of those data types. Moreover, we perform a systematic analysis of solutions for privacy protection, by presenting and comparing privacy tools. From the performed analysis, we identify open challenges and future directions, namely, in the development of novel PPMs. (C) 2021 The Authors. Published by Elsevier Inc.

2021

On the correctness and efficiency of a novel lock-free hash trie map design

Autores
Areias, M; Rocha, R;

Publicação
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING

Abstract
Hash tries are a trie-based data structure with nearly ideal characteristics for the implementation of hash maps. In this paper, we present a novel, simple and scalable hash trie map design that fully supports the concurrent search, insert and remove operations on hash maps. To the best of our knowledge, our proposal is the first that puts together the following characteristics: (i) be lock free; (ii) use fixed size data structures; and (iii) maintain the access to all internal data structures as persistent memory references. Our design is modular enough to allow different types of configurations aimed for different performances in memory usage and execution time and can be easily implemented in any type of language, library or within other complex data structures. We discuss in detail the key algorithms required to easily reproduce our implementation by others and we present a proof of correctness showing that our proposal is linearizable and lock-free for the search, insert and remove operations. Experimental results show that our proposal is quite competitive when compared against other state-of-the-art proposals implemented in Java.

2021

Efficient Privacy Preserving Distributed K-Means for Non-IID Data

Autores
Brandao, A; Mendes, R; Vilela, JP;

Publicação
ADVANCES IN INTELLIGENT DATA ANALYSIS XIX, IDA 2021

Abstract
Privacy is becoming a crucial requirement in many machine learning systems. In this paper we introduce an efficient and secure distributed K-Means algorithm, that is robust to non-IID data. The base idea of our proposal consists in each client computing the K-Means algorithm locally, with a variable number of clusters. The server will use the resultant centroids to apply the K-Means algorithm again, discovering the global centroids. To maintain the client's privacy, homomorphic encryption and secure aggregation is used in the process of learning the global centroids. This algorithm is efficient and reduces transmission costs, since only the local centroids are used to find the global centroids. In our experimental evaluation, we demonstrate that our strategy achieves a similar performance to the centralized version even in cases where the data follows an extreme non-IID form.

2021

The Dawn of the Human-Machine Era: A forecast of new and emerging language technologies

Autores
Sayers, D; Sousa-Silva, R; Höhn, S; Ahmedi, L; Allkivi-Metsoja, K; Anastasiou, D; Benuš, Š; Bowker, L; Bytyçi, E; Catala, A; Çepani, A; Chacón-Beltrán, R; Dadi, S; Dalipi, F; Despotovic, V; Doczekalska, A; Drude, S; Fort, K; Fuchs, R; Galinski, C; Gobbo, F; Gungor, T; Guo, S; Höckner, K; Láncos, PL; Libal, T; Jantunen, T; Jones, D; Klimova, B; Korkmaz, EE; Maucec, MS; Melo, M; Meunier, F; Migge, B; Mititelu, VB; Névéol, A; Rossi, A; Pareja-Lora, A; Sanchez-Stockhammer, C; Sahin, A; Soltan, A; Soria, C; Shaikh, S; Turchi, M; Yildirim Yayilgan, S;

Publicação

Abstract
New language technologies are coming, thanks to the huge and competing private investment fuelling rapid progress; we can either understand and foresee their effects, or be taken by surprise and spend our time trying to catch up. This report scketches out some transformative new technologies that are likely to fundamentally change our use of language. Some of these may feel unrealistically futuristic or far-fetched, but a central purpose of this report - and the wider LITHME network - is to illustrate that these are mostly just the logical development and maturation of technologies currently in prototype. But will everyone benefit from all these shiny new gadgets? Throughout this report we emphasise a range of groups who will be disadvantaged and issues of inequality. Important issues of security and privacy will accompany new language technologies. A further caution is to re-emphasise the current limitations of AI. Looking ahead, we see many intriguing opportunities and new capabilities, but a range of other uncertainties and inequalities. New devices will enable new ways to talk, to translate, to remember, and to learn. But advances in technology will reproduce existing inequalities among those who cannot afford these devices, among the world’s smaller languages, and especially for sign language. Debates over privacy and security will flare and crackle with every new immersive gadget. We will move together into this curious new world with a mix of excitement and apprehension - reacting, debating, sharing and disagreeing as we always do. Plug in, as the human-machine era dawns.

2021

Programming Robots by Demonstration Using Augmented Reality

Autores
Soares, I; Petry, M; Moreira, AP;

Publicação
SENSORS

Abstract
The world is living the fourth industrial revolution, marked by the increasing intelligence and automation of manufacturing systems. Nevertheless, there are types of tasks that are too complex or too expensive to be fully automated, it would be more efficient if the machines were able to work with the human, not only by sharing the same workspace but also as useful collaborators. A possible solution to that problem is on human-robot interaction systems, understanding the applications where they can be helpful to implement and what are the challenges they face. This work proposes the development of an industrial prototype of a human-machine interaction system through Augmented Reality, in which the objective is to enable an industrial operator without any programming experience to program a robot. The system itself is divided into two different parts: the tracking system, which records the operator's hand movement, and the translator system, which writes the program to be sent to the robot that will execute the task. To demonstrate the concept, the user drew geometric figures, and the robot was able to replicate the operator's path recorded.

2021

Potential Non-Invasive Technique for Accessing Plant Water Contents Using a Radar System

Autores
Santos, LC; dos Santos, FN; Morais, R; Duarte, C;

Publicação
AGRONOMY-BASEL

Abstract
Sap flow measurements of trees are today the most common method to determine evapotranspiration at the tree and the forest/crop canopy level. They provide independent measurements for flux comparisons and model validation. The most common approach to measure the sap flow is based on intrusive solutions with heaters and thermal sensors. This sap flow sensor technology is not very reliable for more than one season crop; it is intrusive and not adequate for low diameter trunk trees. The non-invasive methods comprise mostly Radio-frequency (RF) technologies, typically using satellite or air-born sources. This system can monitor large fields but cannot measure sap levels of a single plant (precision agriculture). This article studies the hypothesis to use of RF signals attenuation principle to detect variations in the quantity of water present in a single plant. This article presents a well-defined experience to measure water content in leaves, by means of high gains RF antennas, spectrometer, and a robotic arm. Moreover, a similar concept is studied with an off-the-shelf radar solution-for the automotive industry-to detect changes in the water presence in a single plant and leaf. The conclusions indicate a novel potential application of this technology to precision agriculture as the experiments data is directly related to the sap flow variations in plant.

  • 64
  • 217