Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2024

Enhancing IoT Security in Vehicles: A Comprehensive Review of AI-Driven Solutions for Cyber-Threat Detection

Autores
Abreu, R; Simão, E; Serôdio, C; Branco, F; Valente, A;

Publicação
AI

Abstract
Background: The Internet of Things (IoT) has improved many aspects that have impacted the industry and the people’s daily lives. To begin with, the IoT allows communication to be made across a wide range of devices, from household appliances to industrial machinery. This connectivity allows for a better integration of the pervasive computing, making devices “smart” and capable of interacting with each other and with the corresponding users in a sublime way. However, the widespread adoption of IoT devices has introduced some security challenges, because these devices usually run in environments that have limited resources. As IoT technology becomes more integrated into critical infrastructure and daily life, the need for stronger security measures will increase. These devices are exposed to a variety of cyber-attacks. This literature review synthesizes the current research of artificial intelligence (AI) technologies to improve IoT security. This review addresses key research questions, including: (1) What are the primary challenges and threats that IoT devices face?; (2) How can AI be used to improve IoT security?; (3) What AI techniques are currently being used for this purpose?; and (4) How does applying AI to IoT security differ from traditional methods? Methods: We included a total of 33 peer-reviewed studies published between 2020 and 2024, specifically in journal and conference papers written in English. Studies irrelevant to the use of AI for IoT security, duplicate studies, and articles without full-text access were excluded. The literature search was conducted using scientific databases, including MDPI, ScienceDirect, IEEE Xplore, and SpringerLink. Results were synthesized through a narrative synthesis approach, with the help of the Parsifal tool to organize and visualize key themes and trends. Results: We focus on the use of machine learning, deep learning, and federated learning, which are used for anomaly detection to identify and mitigate the security threats inherent to these devices. AI-driven technologies offer promising solutions for attack detection and predictive analysis, reducing the need for human intervention more significantly. This review acknowledges limitations such as the rapidly evolving nature of IoT technologies, the early-stage development or proprietary nature of many AI techniques, the variable performance of AI models in real-world applications, and potential biases in the search and selection of articles. The risk of bias in this systematic review is moderate. While the study selection and data collection processes are robust, the reliance on narrative synthesis and the limited exploration of potential biases in the selection process introduce some risk. Transparency in funding and conflict of interest reporting reduces bias in those areas. Discussion: The effectiveness of these AI-based approaches can vary depending on the performance of the model and the computational efficiency. In this article, we provide a comprehensive overview of existing AI models applied to IoT security, including machine learning (ML), deep learning (DL), and hybrid approaches. We also examine their role in enhancing the detection accuracy. Despite all the advances, challenges still remain in terms of data privacy and the scalability of AI solutions in IoT security. Conclusion: This review provides a comprehensive overview of ML applications to enhance IoT security. We also discuss and outline future directions, emphasizing the need for collaboration between interested parties and ongoing innovation to address the evolving threat landscape in IoT security.

2024

Arduino-Based Mobile Robotics for Fostering Computational Thinking Development: An Empirical Study with Elementary School Students Using Problem-Based Learning Across Europe

Autores
Barradas, R; Lencastre, JA; Soares, SP; Valente, A;

Publicação
ROBOTICS

Abstract
The present article explores the impact of educational robotics on fostering computational thinking and problem-solving skills in elementary school students through a problem-based learning approach. This study involved the creation of a framework which includes a robot and two eBooks designed for students and teachers. The eBooks serve as a guide to the construction and programming of a small Arduino-based robot. Through integration with gamification elements, the model features a narrative with three characters to boost a student's engagement and motivation. Through iteration of heuristic evaluations and practical tests, we refined the initial theoretical framework. An empirical study was conducted in two phases involving 350 students. The first empirical test involved a small group of 21 students, similar to end users, from five European schools. With a 100% completion rate for the tasks, 73.47% of these tasks were solved optimally. Later, we conducted a larger validation study which involved 329 students in a Portuguese school. This second phase of the study was conducted during the 2022-2023 and 2023-2024 school years with three study groups. The results led to a 91.13% success rate in problem-solving activities, and 56.99% of those students achieved optimal solutions. Advanced statistical techniques, including ANOVA, were applied to account for group differences and ensure the robustness of the findings. This study demonstrates that the proposed model which integrates educational robotics with problem-based learning effectively promotes computational thinking and problem-solving skills, which are essential for the 21st century. These findings support the inclusion of robotics into primary school curricula and provide a validated framework for educators.

2024

Towards Enhanced Human Activity Recognition for Real-World Human-Robot Collaboration

Autores
Yalçinkaya, B; Couceiro, MS; Pina, L; Soares, S; Valente, A; Remondino, F;

Publicação
IEEE International Conference on Robotics and Automation, ICRA 2024, Yokohama, Japan, May 13-17, 2024

Abstract

2024

Optimizing wind farm cable layout considering ditch sharing

Autores
Cerveira, A; de Sousa, A; Pires, EJS; Baptista, J;

Publicação
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
Wind power is becoming an important source of electrical energy production. In an onshore wind farm (WF), the electrical energy is collected at a substation from different wind turbines through electrical cables deployed over ground ditches. This work considers the WF layout design assuming that the substation location and all wind turbine locations are given, and a set of electrical cable types is available. The WF layout problem, taking into account its lifetime and technical constraints, involves selecting the cables to interconnect all wind turbines to the substation and the supporting ditches to minimize the initial investment cost plus the cost of the electrical energy that is lost on the cables over the lifetime of the WF. It is assumed that each ditch can deploy multiple cables, turning this problem into a more complex variant of previously addressed WF layout problems. This variant turns the problem best fitting to the real case and leads to substantial gains in the total cost of the solutions. The problem is defined as an integer linear programming model, which is then strengthened with different sets of valid inequalities. The models are tested with four WFs with up to 115 wind turbines. The computational experiments show that the optimal solutions can be computed with the proposed models for almost all cases. The largest WF was not solved to optimality, but the final relative gaps are small.

2024

A New Approach for Element Characterization of Grapevine Tissue with Laser-Induced Breakdown Spectroscopy

Autores
Tosin, R; Monteiro Silva, F; Martins, R; Cunha, M;

Publicação
HORTICULTURAE

Abstract
The determination of grape quality parameters is intricately linked to the mineral composition of the fruit; this relationship is increasingly affected by the impacts of climate change. The conventional chemical methodologies employed for the mineral quantification of grape tissues are expensive and impracticable for widespread commercial applications. This paper utilized Laser-Induced Breakdown Spectroscopy (LIBS) to analyze the mineral constituents within the skin, pulp, and seeds of two distinct Vitis vinifera cultivars: a white cultivar (Loureiro) and a red cultivar (Vinh & atilde;o). The primary objective was to discriminate the potential variations in the calcium (Ca), magnesium (Mg), and nitrogen (N) concentrations and water content among different grape tissues, explaining their consequential impact on the metabolic constitution of the grapes and, by extension, their influence on various quality parameters. Additionally, the study compared the mineral contents of the white and red grape cultivars across three distinct time points post veraison. Significant differences (p < 0.05) were observed between the Loureiro and Vinh & atilde;o cultivars in Ca concentrations across all the dates and tissues and for Mg in the skin and pulp, N in the pulp and seeds, and water content in the skin and pulp. In the Vinh & atilde;o cultivar, Ca differences were found in the pulp across the dates, N in the seeds, and water content in the skin, pulp, and seeds. Comparing the cultivars within tissues, Ca exhibited differences in the pulp, Mg in the skin and pulp, N in the pulp and seeds, and water content in the skin, pulp, and seeds. These findings provide insights into the relationship between the grape mineral and water content, climatic factors, and viticulture practices within a changing climate.

2024

Comparative Evaluation of Remote Sensing Platforms for Almond Yield Prediction

Autores
Guimaraes, N; Fraga, H; Sousa, JJ; Pádua, L; Bento, A; Couto, P;

Publicação
AGRIENGINEERING

Abstract
Almonds are becoming a central element in the gastronomic and food industry worldwide. Over the last few years, almond production has increased globally. Portugal has become the third most important producer in Europe, where this increasing trend is particularly evident. However, the susceptibility of almond trees to changing climatic conditions presents substantial risks, encompassing yield reduction and quality deterioration. Hence, yield forecasts become crucial for mitigating potential losses and aiding decisionmakers within the agri-food sector. Recent technological advancements and new data analysis techniques have led to the development of more suitable methods to model crop yields. Herein, an innovative approach to predict almond yields in the Tras-os-Montes region of Portugal was developed, by using machine learning regression models (i.e., the random forest regressor, XGBRegressor, gradient boosting regressor, bagging regressor, and AdaBoost regressor), coupled with remote sensing data obtained from different satellite platforms. Satellite data from both proprietary and free platforms at different spatial resolutions were used as features in the study (i.e., the GSMP: 11.13 km, Terra: 1 km, Landsat 8: 30 m, Sentinel-2: 10 m, and PlanetScope: 3 m). The best possible combination of features was analyzed and hyperparameter tuning was applied to enhance the prediction accuracy. Our results suggest that high-resolution data (PlanetScope) combined with irrigation information, vegetation indices, and climate data significantly improves almond yield prediction. The XGBRegressor model performed best when using PlanetScope data, reaching a coefficient of determination (R2) of 0.80. However, alternative options using freely available data with lower spatial resolution, such as GSMaP and Terra MODIS LST, also showed satisfactory performance (R2 = 0.68). This study highlights the potential of integrating machine learning models and remote sensing data for accurate crop yield prediction, providing valuable insights for informed decision support in the almond sector, contributing to the resilience and sustainability of this crop in the face of evolving climate dynamics.

  • 18
  • 346