2016
Autores
Hierro Rodriguez, A; Leite, IT; Rocha Rodrigues, P; Fernandes, P; Araujo, JP; Jorge, PAS; Santos, JL; Teixeira, JM; Guerreiro, A;
Publicação
NANOTECHNOLOGY
Abstract
A palladium (Pd)-based optical metamaterial has been designed, fabricated and characterized for its application in hydrogen sensing. The metamaterial can replace Pd thin films in optical transmission schemes for sensing with performances far superior to those of conventional sensors. This artificial material consists of a palladium-alumina metamaterial fabricated using inexpensive and industrial-friendly bottom-up techniques. During the exposure to hydrogen, the system exhibits anomalous optical absorption when compared to the well-known response of Pd thin films, this phenomenon being the key factor for the sensor sensitivity. The exposure to hydrogen produces a large variation in the light transmission through the metamembrane (more than 30% with 4% in volume hydrogen-nitrogen gas mixture at room temperature and atmospheric pressure), thus avoiding the need for sophisticated optical detection systems. An optical homogenization model is proposed to explain the metamaterial response. These results contribute to the development of reliable and low-cost hydrogen sensors with potential applications in the hydrogen economy and industrial processes to name a few, and also open the door to optically study the hydrogen diffusion processes in Pd nanostructures.
2016
Autores
Rocha Rodrigues, P; Hierro Rodriguez, A; Guerreiro, A; Jorge, P; Santos, JL; Araujo, JP; Miguel Teixeira, JM;
Publicação
CHEMISTRYSELECT
Abstract
In this manuscript we present a new type of hydrogen optical metamaterial sensor based on the fabrication of Pd dendritic nanostructures. The fabrication of the sensor relies on a cheap self-assembly process based on the pulsed electrodeposition method in nanoporous alumina templates. By performing optical transmission measurements, we demonstrate how this sensor can monitor hydrogen gas concentrations at room temperature either by evaluating the rate of signal decay during the Pd hydrogen absorption (transient regime) or by measuring the total variation in signal once the system achieves the equilibrium state (stationary regime). We take into account the effects of the Pd-hydrogen phase transition and its size dependency to explain the kinetics of the hydrogen absorption and desorption in the studied samples. By using the transient detection method, the sensor is able to detect in approximately 50 s the explosive H-2(g) concentration threshold of 4% v/v at atmospheric pressure and room temperature.
2016
Autores
Monteiro, CS; Ferreira, MS; Silva, SO; Kobelke, J; Schuster, K; Bierlich, J; Frazao, O;
Publicação
PHOTONIC SENSORS
Abstract
A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m(-1). When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/degrees C to 0.89 pm/degrees C, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.
2016
Autores
Rodrigues Ribeiro, RSR; Dahal, P; Guerreiro, A; Jorge, PAS; Viegas, J;
Publicação
COMPLEX LIGHT AND OPTICAL FORCES X
Abstract
In this work FZL and FPL fabricated using Focused Ion Beam milling on the top of custom-made optical fibers are presented. Primary, single mode fibers are spliced to a segment of multimode fiber allowing to expand the core region. Subsequently, FZL and FPL with several focusing distances are milled on the top of the fibers. In this regard, the zone and phase plates offer distinct focusing characteristics which are here presented and analyzed. Moreover, the output optical intensity field of the FPL and FZP are evaluated and validated using an implementation of the Finite Differences Time Domain (Lumerical). Lastly, some considerations on the use of the tips as fiber optical tweezers are given.
2016
Autores
Oliveira, L; Carvalho, MI; Nogueira, E; Tuchin, VV;
Publicação
JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES
Abstract
Optical immersion clearing is a technique that has been widely studied for more than two decades and that is used to originate a temporary transparency effect in biological tissues. If applied in cooperation with clinical methods it provides optimization of diagnosis and treatment procedures. This technique turns biological tissues more transparent through two main mechanisms - tissue dehydration and refractive index (RI) matching between tissue components. Such matching is obtained by partial replacement of interstitial water by a biocompatible agent that presents higher RI and it can be completely reversible by natural rehydration in vivo or by assisted rehydration in ex vivo tissues. Experimental data to characterize and discriminate between the two mechanisms and to find new ones are necessary. Using a simple method, based on collimated transmittance and thickness measurements made from muscle samples under treatment, we have estimated the diffusion properties of glucose, ethylene glycol (EG) and water that were used to perform such characterization and discrimination. Comparing these properties with data from literature that characterize their diffusion in water we have observed that muscle cell membrane permeability limits agent and water diffusion in the muscle. The same experimental data has allowed to calculate the optical clearing (OC) efficiency and make an interpretation of the internal changes that occurred in muscle during the treatments. The same methodology can now be used to perform similar studies with other agents and in other tissues in order to solve engineering problems at design of inexpensive and robust technologies for a considerable improvement of optical tomographic techniques with better contrast and in-depth imaging.
2016
Autores
Coelho, L; Viegas, D; Santos, JL; de Almeida, JMMM;
Publicação
TALANTA
Abstract
A hybrid optical sensing scheme based on a fiber Bragg grating (FBG) combined with a titanium dioxide coated long period fiber grating (LPFG) for monitoring organic solvents in high refractive index edible oils is reported. In order to investigate and optimize the sensor performance, two different FBG/LPFG interrogation systems were investigated. The readout of the sensor was implemented using either the wavelength shift of the LPFG resonance dip or the variation in the optical power level of the reflected/transmitted light at the FBG wavelength peak, which in turn depends on the wavelength position of the LPFG resonance. Hexane concentrations up to 20%V/V, corresponding to the refractive index range from 1.451 to 1.467, were considered. For the transmission mode of operation, sensitivities of 1.41 nm/%V/V and 0.11 dB/%V/V, with resolutions of 0.58%V/V and 0.29%V/V, were achieved when using the LPFG wavelength shift and the FBG transmitted optical power, respectively. For the FBG reflection mode of operation, a sensitivity of 0.07 dB/V/V and a resolution better than 0.16%V/V were estimated.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.