2024
Autores
Amaro, M; Oliveira, HP; Pereira, T;
Publicação
2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024
Abstract
Lung Cancer (LC) is still among the top main causes of death worldwide, and it is the leading death number among other cancers. Several AI-based methods have been developed for the early detection of LC, trying to use Computed Tomography (CT) images to identify the initial signs of the disease. The survival prediction could help the clinicians to adequate the treatment plan and all the proceedings, by the identification of the most severe cases that need more attention. In this study, several deep learning models were compared to predict the survival of LC patients using CT images. The best performing model, a CNN with 3 layers, achieved an AUC value of 0.80, a Precision value of 0.56 and a Recall of 0.64. The obtained results showed that CT images carry information that can be used to assess the survival of LC.
2024
Autores
Fernandes, L; Pereira, T; Oliveira, HP;
Publicação
2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024
Abstract
Currently, lung cancer is one of the deadliest diseases that affects millions of people globally. However, Artificial Intelligence is being increasingly integrated with healthcare practices, with the goal to aid in the early diagnosis of lung cancer. Although such methods have shown very promising results, they still lack transparency to the user, which consequently could make their generalised adoption a challenging task. Therefore, in this work we explore the use of post-hoc explainable methods, to better understand the inner-workings of an already established multitasking framework that executes the segmentation and the classification task of lung nodules simultaneously. The idea behind such study is to understand how a multitasking approach impacts the model's performance in the lung nodule classification task when compared to single-task models. Our results show that the multitasking approach works as an attention mechanism by aiding the model to learn more meaningful features. Furthermore, the multitasking framework was able to achieve a better performance in regard to the explainability metric, with an increase of 7% when compared to our baseline, and also during the classification and segmentation task, with an increase of 4.84% and 15.03%; for each task respectively, when also compared to the studied baselines.
2025
Autores
Silva, F; Oliveira, HP; Pereira, T;
Publicação
ACM COMPUTING SURVEYS
Abstract
The large gap between the generalization level of state-of-the-art machine learning and human learning systems calls for the development of artificial intelligence (AI) models that are truly inspired by human cognition. In tasks related to image analysis, searching for pixel-level regularities has reached a power of information extraction still far from what humans capture with image-based observations. This leads to poor generalization when even small shifts occur at the level of the observations. We explore a perspective on this problem that is directed to learning the generative process with causality-related foundations, using models capable of combining symbolic manipulation, probabilistic reasoning, and pattern recognition abilities. We briefly review and explore connections of research from machine learning, cognitive science, and related fields of human behavior to support our perspective for the direction to more robust and human-like artificial learning systems.
2024
Autores
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, LM;
Publicação
2024 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT 2024
Abstract
Telecommunications and computer vision have evolved separately so far. Yet, with the shift to sub-terahertz (sub-THz) and terahertz (THz) radio communications, there is an opportunity to explore computer vision technologies together with radio communications, considering the dependency of both technologies on Line of Sight. The combination of radio sensing and computer vision can address challenges such as obstructions and poor lighting. Also, machine learning algorithms, capable of processing multimodal data, play a crucial role in deriving insights from raw and low-level sensing data, offering a new level of abstraction that can enhance various applications and use cases such as beamforming and terminal handovers. This paper introduces CONVERGE, a pioneering vision-radio paradigm that bridges this gap by leveraging Integrated Sensing and Communication (ISAC) to facilitate a dual View-to-Communicate, Communicate-to-View approach. CONVERGE offers tools that merge wireless communications and computer vision, establishing a novel Research Infrastructure (RI) that will be open to the scientific community and capable of providing open datasets. This new infrastructure will support future research in 6G and beyond concerning multiple verticals, such as telecommunications, automotive, manufacturing, media, and health.
2024
Autores
Fernandes, L; Pereira, T; Oliveira, HP;
Publicação
37th IEEE International Symposium on Computer-Based Medical Systems, CBMS 2024, Guadalajara, Mexico, June 26-28, 2024
Abstract
2024
Autores
Rodrigues Nogueira, AF; Oliveira, HP; Teixeira, LF;
Publicação
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.