Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por João Gama

2024

Improving hyper-parameter self-tuning for data streams by adapting an evolutionary approach

Autores
Moya, AR; Veloso, B; Gama, J; Ventura, S;

Publicação
DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
Hyper-parameter tuning of machine learning models has become a crucial task in achieving optimal results in terms of performance. Several researchers have explored the optimisation task during the last decades to reach a state-of-the-art method. However, most of them focus on batch or offline learning, where data distributions do not change arbitrarily over time. On the other hand, dealing with data streams and online learning is a challenging problem. In fact, the higher the technology goes, the greater the importance of sophisticated techniques to process these data streams. Thus, improving hyper-parameter self-tuning during online learning of these machine learning models is crucial. To this end, in this paper, we present MESSPT, an evolutionary algorithm for self-hyper-parameter tuning for data streams. We apply Differential Evolution to dynamically-sized samples, requiring a single pass-over of data to train and evaluate models and choose the best configurations. We take care of the number of configurations to be evaluated, which necessarily has to be reduced, thus making this evolutionary approach a micro-evolutionary one. Furthermore, we control how our evolutionary algorithm deals with concept drift. Experiments on different learning tasks and over well-known datasets show that our proposed MESSPT outperforms the state-of-the-art on hyper-parameter tuning for data streams.

2019

Uma Análise sobre a Evolução das Preferências Musicais dos Usuários Utilizando Redes de Similaridade Temporal

Autores
Fernandes Pereira, FS; Linhares, CDG; Ponciano, JR; Gama, J; Amo, Sd; Oliveira, GMB;

Publicação
Braz. J. Inf. Syst.

Abstract

2024

Unveiling Group-Specific Distributed Concept Drift: A Fairness Imperative in Federated Learning

Autores
Salazar, T; Gama, J; Araújo, H; Abreu, PH;

Publicação
CoRR

Abstract

2024

A Neuro-Symbolic Explainer for Rare Events: A Case Study on Predictive Maintenance

Autores
Gama, J; Ribeiro, RP; Mastelini, SM; Davari, N; Veloso, B;

Publicação
CoRR

Abstract

2024

Detecting and Explaining Anomalies in the Air Production Unit of a Train

Autores
Davari, N; Veloso, B; Ribeiro, RP; Gama, J;

Publicação
39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024

Abstract
Predictive maintenance methods play a crucial role in the early detection of failures and errors in machinery, preventing them from reaching critical stages. This paper presents a comprehensive study on a real-world dataset called MetroPT3, with data from a Metro do Porto train's air production unit (APU) system. The dataset comprises data collected from various analogue and digital sensors installed on the APU system, enabling the analysis of behavioural changes and deviations from normal patterns. We propose a data-driven predictive maintenance framework based on a Long Short-Term Memory Autoencoder (LSTM-AE) network. The LSTM-AE efficiently identifies abnormal data instances, leading to a reduction in false alarm rates. We also implement a Sparse Autoencoder (SAE) approach for comparative analysis. The experimental results demonstrate that the LSTM-AE outperforms the SAE regarding F1 Score, Recall, and Precision. Furthermore, to gain insights into the reasons for anomaly detection, we apply the Shap method to determine the importance of features in the predictive maintenance model. This approach enhances the interpretability of the model to support the decision-making process better.

2024

Where DoWe Go From Here? Location Prediction from Time-Evolving Markov Models

Autores
Andrade, T; Gama, J;

Publicação
39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024

Abstract
Various relevant aspects of our lives relate to the places we visit and our daily activities. The movement of individuals between regular places, such as work, school, or other important personal locations is getting increasing attention due to the pervasiveness of geolocation devices and the amount of data they generate. This work presents an approach for location prediction using a probabilistic model and data mining techniques over mobility data streams. We evaluate the method over 5 real-world datasets. The results show the usefulness of the proposal in comparison with other-well-known approaches.

  • 87
  • 91