Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

Integrating SolidWorks, LabVIEW, and Arduino in Robotics Education

Autores
Coelho J.P.; Coelho J.A.B.; Gonçalves J.;

Publicação
Lecture Notes in Educational Technology

Abstract
This paper explores the integration of SolidWorks, LabVIEW, and Arduino as a comprehensive and cost-effective approach to teaching robotics to undergraduate students. In scenarios where real hardware is unavailable or prohibitively expensive, this methodology offers significant advantages. SolidWorks enables students to design and simulate robotic components in a virtual environment, fostering a deep understanding of mechanical design and engineering principles. LabVIEW provides an intuitive graphical interface for programming and control, allowing students to develop and test their algorithms. Finally, Arduino, as an open-source hardware platform, bridges the gap between virtual simulations and physical implementation, offering a hands-on experience with minimal financial investment. Together, these tools create a robust educational framework that enhances theoretical knowledge through practical application, encourages innovation, and prepares students for real-world engineering challenges. The paper concludes that this integrated approach not only mitigates the limitations of resource constraints but also enriches the learning experience by providing a versatile and accessible platform for robotics education.

2025

Metaverse branding: A review and future directions

Autores
Barbosa, B;

Publicação
Strategic Brand Management in the Age of AI and Disruption

Abstract
The main aims of this chapter were to explore metaverse branding by identifying the main trends and contributions in extant literature. Through a bibliometry and the critical analysis of the main contributions in the literature, the chapter proposes a metaverse branding conceptualization, which shows how immersive metaverse experiences that provide multi- dimensional value enhance brand engagement, which leads to increased brand awareness, brand love, satisfaction, trust, and brand equity. These factors ultimately drive online and offline purchases and strengthen brand loyalty. Overall, this chapter and the proposed framework provide relevant insights for both managers defining metaverse branding strategies, and researchers interested in these topics. © 2025, IGI Global Scientific Publishing. All rights reserved.

2025

On Bridging Prolog and Python to Enhance an Inductive Logic Programming System

Autores
Costa, VS; Areias, M;

Publicação
PRACTICAL ASPECTS OF DECLARATIVE LANGUAGES, PADL 2025

Abstract
Prolog is a programming language that provides a high-level approach to software development. Python is a versatile programming language that has a vast range of libraries including support for data analysis and machine learning tasks. We present a Prolog-Python interface that aims at exploiting Prolog deduction capabilities and Python's extensive libraries. Our novel interface was built using a divide and conquer methodology. In a first step, we implemented a set of C++ classes that can be matched to Python classes; next, we used an interface generator to export the relevant classes. Finally, we use C code to actually convert between the two realms. In order to demonstrate the usefulness of the interface, we enhance an Inductive Logic Programming System with a visualization capabilities and show how to interface with a standard classifier.

2025

Performance Comparison Between Position Controllers for a Robotic Arm Manipulator

Autores
Braun, J; Chellal, AA; Lima, J; Pinto, VH; Pereira, AI; Costa, P;

Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
This paper compares five PID controller architectures for robotic manipulator position control, addressing the challenge of maintaining performance under varying inertial loads while providing accessible implementations for research and education. The five PID controller architectures for a three degrees-of-freedom SCARA manipulator position control are a basic Proportional-Derivative (PD), PD with Feed-Forward (FF), Parallel PD-PI-FF, Cascade PD-PI-FF, and Cascade PD-PI-FF with dead zone (DZ) compensation. The controllers were evaluated under varying inertial loads to assess robustness, extending beyond previous work's idealized conditions. Results show advanced configurations reduced errors by up to 64% compared to the baseline PD, with Parallel-FF achieving optimal dynamic performance and Cascade-FF-DZ excelling in steady-state control. The Feed-Forward addition enhanced tracking performance, while DZ compensation effectively eliminated limit cycles. The work provides open-source implementations and simulation environments, supporting research reproducibility and educational applications in robotics control.

2025

Maximizing PV Hosting Capacity in Unbalanced and Active Distribution Systems With EVs and Demand Response

Autores
Yumbla, J; Home-Ortiz, JM; Pinto, T; Mantovani, JRS;

Publicação
IEEE ACCESS

Abstract
In this paper is presented a mixed-integer linear programming (MILP) model that maximizes the Photovoltaic-based (PV-based) hosting capacity (HC) in unbalanced and active distribution networks. The model takes into account the controlled charge of electric vehicles (EVs) and incorporates a demand-response program (DRP), for demand-side load shifting. The model's solution determines the optimal operation of distributed generators (DGs), switched capacitor banks (SCBs), energy storage devices (ESDs), coordination of the EVs charging, and DRP. Linear formulation is obtained from a mixed-integer non-linear programming (MINLP) model, ensuring tractability and guarantee convergence, since it can be efficiently solved using commercial optimization solvers of convex optimization. The model's effectiveness is demonstrated through tests on a 123-bus, three-phase unbalanced distribution system. Four case studies are conducted to assess the effect of different distributed energy resources (DERs). Results show that the simultaneous optimization of DERs, EVs charging and DR scheduling can significantly increase the PV-based HC -reaching up more than the substation capacity- while reducing total power losses. These findings demonstrate the technical potential of integrated DER coordination in enhancing PV penetration and improving the operational efficiency of active distribution systems.

2025

Low-Cost Versatile Optical Fiber Sensor for Structural Health Monitoring of Reinforced Concrete Structures

Autores
da Silva, PM; Mendes, JP; Coelho, LCC; de Almeida, JMMM;

Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS

Abstract
Reinforced concrete structures form the backbone of civil infrastructure due to their durability, longevity, affordability, and availability. However, aging concrete poses challenges, with decay often beginning internally and becoming visible only at advanced stages, leading to costly repairs, restricted functionality, and safety risks. To address these challenges, sensors are crucial for enhancing infrastructure resilience and optimizing repairs. This study employs multimode optical fibers to monitor concrete curing, water ingress, relative humidity (RH), cement paste carbonation, and rebar corrosion. Four sensors monitor changes in reflection at the fiber tip of a 600 mu m multimode fiber (MMF) using LEDs and photodiodes, connected via a fiber bundle containing two 200 mu m MMF. Variations in the refractive index around the fiber tip are used to monitor water throughout the concrete lifecycle, including curing, RH changes and water intrusion. Colorimetric changes in a cement paste layer and an iron-thin film are used to monitor carbonation and corrosion. The curing sensor is temperature-independent and correlates strongly with cumulative heat release from cement hydration (R=0.95). The RH sensor monitors up to and beyond 100% RH, detecting water intrusion. The corrosion sensor detects early corrosion stages and distinguishes between reflection losses from corrosion and mechanical changes. The layer of cement paste for carbonation monitoring increases reflected intensity by 17% due to carbonation, with 63% of the increase occurring in 80 minutes in a 3% CO2 atmosphere. The broad monitoring scope and low implementation cost make this sensor a unique option among commercially available solutions for structural health monitoring of reinforced concrete.

  • 100
  • 4392