2025
Autores
Capela, D; Baptista, MC; Gomes, BM; Jorge, PAS; Silva, NA; Braga, MH; Guimaraes, D;
Publicação
JOURNAL OF POWER SOURCES
Abstract
Solid-state batteries are prominent in today's research landscape due to their advantages in capacity and safety. This work explores anode-less all-solid-state batteries, a configuration with industrial benefits as it avoids handling alkali metal anodes, albeit with room for improvement. To elucidate the intricacies of these batteries, Laser-Induced Breakdown Spectroscopy (LIBS) served as a pivotal analytical tool, primarily focusing on the negative current collector surface where Li+ nucleation occurs from the Li-rich electrolyte. The use of a fiber-laser for breakdown spectroscopy offers advantages over conventional lasers by producing high beam quality, enabling minimal spot size, and ensuring excellent spatial resolution. LIBS is an asset to verify Li presence, discerning its source, assessing nucleation and distinguishing it from electrolyte-derived Li. For instance, in this work utilizing Li2.99Ba0.005ClO as the electrolyte, LIBS is crucial to elucidate the relationship between Li and other elements like Cl, Zn, or Fe, shedding light on key battery performance aspects. LIBS demonstrated a high potential for verifying in situ Li metal nucleation in anode-less cells. This study highlights its effectiveness in conceptual and product development and advanced quality testing. The application of a clustering method enhanced result interpretability and the distinction between electrolyte and in situ anode regions.
2025
Autores
Cunha, M; Mendes, R; de Montjoye, YA; Vilela, JP;
Publicação
40TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING
Abstract
The pervasiveness of mobile devices has fostered a multitude of services and applications, but also raised serious privacy concerns. In order to avoid users' tracking and/or users' fingerprinting, smartphones have been tightening the access to unique identifiers. Nevertheless, smartphone applications can still collect diverse data from available sensors and smartphone resources. Using real-world data from a field study we performed, this paper demonstrates the possibility of fingerprinting users from Wi-Fi data in mobile devices and the consequent privacy impact. From the performed analysis, we concluded that a single snapshot of a set of scanned Wi-Fi BSSIDs (MAC addresses) per user is enough to uniquely identify about 99% of the users. In addition, the most frequent Wi-Fi BSSID is sufficient to re-identify more than 90% of the users, a percentage that goes up to 97% of the users with the top-2 scanned BSSIDs. The Wi-Fi SSID (network name) also leads to a re-identification risk of about 83% and 97% with 1 and 2 of the strongest Wi-Fi Access Points (APs), respectively.
2025
Autores
Coelho J.A.B.; Brancalião L.; Alvarez M.; Costa P.; Gonçalves J.;
Publicação
Lecture Notes in Educational Technology
Abstract
Integrating physical robots in an educational context often entails acquiring expensive equipment that often operates using proprietary software. Both conditions restrict the students from exploring and fully understanding the internal operation of robots. In response to these limitations, a three-degree-of-freedom robotic manipulator, based on the “EEZYbotARM MK2” open-source design by Carlo Franciscone, is being repurposed and integrated within the SimTwo simulation environment to operate within a hardware-in-the-loop architecture. To accomplish this objective, first, an open-source Arduino-based library was developed aiming at the robot’s online and offline programming akin to industrial robots. The firmware is able to communicate with the SimTwo software in which the digital twin’s robot is living. The dynamic behavior of the robot’s digital twin must be properly parametrized and aligned with the physical robot’s dynamics. This article describes the modeling of the robot joint’s actuator and its closed-loop controller formulation. The obtained results show that the dynamic behavior of the robot joint digital twin closely matches both open and closed-loop, the one of its physical counterpart.
2025
Autores
Ribeiro, J; Sobreira, H; Moreira, A;
Publicação
Lecture Notes in Electrical Engineering
Abstract
This paper presents a novel Nonlinear Model Predictive Controller (NMPC) architecture for trajectory tracking of omnidirectional robots. The key innovation lies in the method of handling constraints on maximum velocity and acceleration outside of the optimization process, significantly reducing computation time. The controller uses a simplified process model to predict the robot’s state evolution, enabling real-time cost function minimization through gradient descent methods. The cost function penalizes position and orientation errors as well as control effort variation. Experimental results compare the performance of the proposed controller with a generic Proportional-Derivative (PD) controller and a NMPC with integrated optimization constraints. The findings reveal that the proposed controller achieves higher precision than the PD controller and similar precision to the NMPC with integrated constraints, but with substantially lower computational effort. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Autores
Guimaraes, CM; Amorim, V; Almeida, F;
Publicação
HUMAN-CENTRED TECHNOLOGY MANAGEMENT FOR A SUSTAINABLE FUTURE, VOL 3, IAMOT 2024
Abstract
This article describes the construction path of a Responsible Research and Innovation (RRI) tool, starting with a systematic literature review of all responsible innovation tools to extract the essential dimensions and exclude overlapping. Those dimensions were presented in a series of workshops within a Research and Innovation Action European Project where 35 Innovation Actions (IA) were developed. Focusgroup methodology was followed, including the IA's leaders, to generate discussion around the sixteen dimensions and the meanings of the different grades of the Likert scale of an assessment tool to be applied to innovation processes and results.
2025
Autores
dos Santos, PSS; Mendes, JP; Pastoriza Santos, I; de Almeida, JMMM; Coelho, LCC;
Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
The phase-matching conditions for exciting surface plasmon resonances (SPR) in plasmonic films are typically satisfied via prism, optical fibers or grating-assisted coupling. We recently showed that plasmonic nanospheres can act as local emitters, exciting SPR waves on thin films-termed nanoparticle-induced SPR (NPI-SPR). This structure holds promise for sensing, but the effects of optical fiber geometry and nanoparticle anisotropy on the response were unexplored. This study examines these factors, showing that an etched multimode fiber with a 200 mu m core diameter, taper ratio of 4, and etching angle of 20 degrees optimizes interaction with plasmonic nanoparticles. Tuning the nanoparticle aspect ratio from 1 to 3 shifts the NPI-SPR band from 780 to 1580 nm, with excitation highly dependent on the incident light angle. Notably, for light incident parallel to the film plane, a refractive index sensitivity exceeding 1000 nm/RIU is achieved. This efficient light emission combines the field locality enhancements of plasmonic nanoparticle-on-film structures with the emission efficiency of plasmonic nanoantennas, advancing plasmonic optical fiber chemical and biosensors.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.