Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

Enabling optical extreme learning machines with nonlinear optics

Autores
Silva, NA; Rocha, VV; Ferreira, TD;

Publicação
MACHINE LEARNING IN PHOTONICS

Abstract
This communication explores an optical extreme learning architecture to unravel the impact of using a nonlinear optical media as an activation layer. Our analysis encloses the evaluation of multiple parameters, with special emphasis on the efficiency of the training process, the dimensionality of the output space, and computing performance across tasks associated with the classification in low-dimensionality input feature spaces. The results enclosed provide evidence of the importance of the nonlinear media as a building block of an optical extreme learning machine, effectively increasing the size of the output space, the accuracy, and the generalization performances. These findings may constitute a step to support future research on the field, specifically targeting the development of robust general-purpose all-optical hardware to a full-stack integration with optical sensing devices toward edge computing solutions.

2024

CINDERELLA clinical trial: Using artificial intelligence-driven healthcare to enhance breast cancer locoregional treatment decisions

Autores
Bonci, EA; Kaidar Person, O; Antunes, M; Ciani, O; Cruz, H; Di Micco, R; Gentilini, OD; Heil, J; Kabata, P; Romariz, M; Gonçalves, T; Martins, H; Borsoi, L; Mika, M; Pfob, A; Romem, N; Schinkoethe, T; Silva, G; Bobowicz, M; Cardoso, MJ;

Publicação
JOURNAL OF CLINICAL ONCOLOGY

Abstract
TPS621 Background: Breast cancer treatments often pose challenges in balancing efficacy with quality of life. The CINDERELLA Project pioneers an artificial intelligence (AI)-driven approach (CINDERELLA APP) for shared decision-making process, aiming to harmonise locoregional therapeutic interventions with breast cancer patients' expectations about aesthetic outcomes. The CINDERELLA clinical trial aims to establish a new standard in patient-centred care by bridging the gap between clinical treatment options and patient expectations through innovative technology. The trial focuses on evaluating the effectiveness of the CINDERELLA APP in improving patient satisfaction regarding locoregional treatment aesthetic outcomes, aligning patient expectations with real-world results, and assessing its impact on overall quality of life and psychological well-being. Methods: Trial design and statistical methods: This international multicentric interventional randomised controlled open-label clinical trial will recruit and randomise patients into two groups: one receiving standard treatment information and the other using the AI-powered CINDERELLA APP. The primary objective is to assess the levels of agreement among patients' expectations regarding the aesthetic outcome before and 12 months after locoregional treatment. The trial will also evaluate the aesthetic outcome level of agreement between the AI evaluation tool and self-evaluation. The impact of the intervention on aligning expectations with outcomes will be evaluated using the Wilcoxon signed-rank test. The improvement in classification of aesthetic results post-intervention will be measured by calculating the Weighted Cohen's kappa. Outcomes across different groups will be compared using statistical tests and bootstrap methods. CANKADO functions as the base system, allowing doctors to supervise APP content for patients and handle data gathering, while upholding principles of privacy, data security, and ethical AI practices. Intervention planned: Using the CINDERELLA APP, the patient will have access to supervised medical information approved by breast cancer experts, and the AI system will match patient's information to pictures showing the potential aesthetic outcome (spectrum of good-poor) according to different locoregional approach. Major eligibility criteria: Non-metastatic breast cancer patients eligible for either breast-conserving surgery or mastectomy with immediate reconstruction. Current enrollment: Recruitment is currently open at six study sites. The recruitment started on 8 August 2023, aiming to enroll at least 515 patients/arm. As of January 26, 2024, clinical study sites have successfully randomised 177 patients. Clinical trial information: NCT05196269 .

2024

Optimized reconstruction of the absorption spectra of kidney tissues from the spectra of tissue components using the least squares method

Autores
Pinheiro, MR; Fernandes, LE; Carneiro, IC; Carvalho, SD; Henrique, RM; Tuchin, VV; Oliveira, HP; Oliveira, LM;

Publicação
JOURNAL OF BIOPHOTONICS

Abstract
With the objective of developing new methods to acquire diagnostic information, the reconstruction of the broadband absorption coefficient spectra (mu a[lambda]) of healthy and chromophobe renal cell carcinoma kidney tissues was performed. By performing a weighted sum of the absorption spectra of proteins, DNA, oxygenated, and deoxygenated hemoglobin, lipids, water, melanin, and lipofuscin, it was possible to obtain a good match of the experimental mu a(lambda) of both kidney conditions. The weights used in those reconstructions were estimated using the least squares method, and assuming a total water content of 77% in both kidney tissues, it was possible to calculate the concentrations of the other tissue components. It has been shown that with the development of cancer, the concentrations of proteins, DNA, oxygenated hemoglobin, lipids, and lipofuscin increase, and the concentration of melanin decreases. Future studies based on minimally invasive spectral measurements will allow cancer diagnosis using the proposed approach.

2024

Emotional Evaluation of Open-Ended Responses with Transformer Models

Autores
Pajón-Sanmartín, A; de Arriba-Pérez, F; García-Méndez, S; Burguillo, JC; Leal, F; Malheiro, B;

Publicação
GOOD PRACTICES AND NEW PERSPECTIVES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, WORLDCIST 2024

Abstract
This work applies Natural Language Processing (NLP) techniques, specifically transformer models, for the emotional evaluation of open-ended responses. Today's powerful advances in transformer architecture, such as ChatGPT, make it possible to capture complex emotional patterns in language. The proposed transformer-based system identifies the emotional features of various texts. The research employs an innovative approach, using prompt engineering and existing context, to enhance the emotional expressiveness of the model. It also investigates spaCy's capabilities for linguistic analysis and the synergy between transformer models and this technology. The results show a significant improvement in emotional detection compared to traditional methods and tools, highlighting the potential of transformer models in this domain. The method can be implemented in various areas, such as emotional research or mental health monitoring, creating a much richer and complete user profile.

2024

Sustainable Irrigation Systems in Vineyards: A Literature Review on the Contribution of Renewable Energy Generation and Intelligent Resource Management Models

Autores
Branquinho, R; Briga-Sá, A; Ramos, S; Serôdio, C; Pinto, T;

Publicação
ELECTRONICS

Abstract
Agriculture being an essential activity sector for the survival and prosperity of humanity, it is fundamental to use sustainable technologies in this field. With this in mind, some statistical data are analyzed regarding the food price rise and sustainable development indicators, with a special focus on the Portugal region. It is determined that one of the main factors that influences agriculture's success is the soil's characteristics, namely in terms of moisture and nutrients. In this regard, irrigation processes have become indispensable, and their technological management brings countless economic advantages. Like other branches of agriculture, the wine sector needs an adequate concentration of nutrients and moisture in the soil to provide the most efficient results, considering the appropriate and intelligent use of available water and energy resources. Given these facts, the use of renewable energies is a very important aspect of this study, which also synthesizes the main irrigation methods and examines the importance of evaluating the evapotranspiration of crops. Furthermore, the control of irrigation processes and the implementation of optimization and resource management models are of utmost importance to allow maximum efficiency and sustainability in this field.

2024

Analysis of the Portuguese and Spanish NECPs using the CEVESA MIBEL market model

Autores
de Oliveira, AR; Collado, JV; Martínez, SD; Lopes, JAP; Saraiva, JT; Campos, FA;

Publicação
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024

Abstract
The member states of the European Union (EU) are actively reassessing their National Energy and Climate Plans (NECPs) [1] to jointly address climate challenges and the impacts of the COVID pandemic and gas supply crisis. This study extends the analyses described in [2] by assessing the impact of the updated NECP drafts for Portugal and Spain [3], [4] on the Iberian Electricity Market (MIBEL). For this, we use CEVESA, a market model for the long-term planning and operation of MIBEL that computes the joint dispatch of energy and secondary reserve of the two interconnected single-price zones. Departing from the expected evolution of the electricity generation technologies and demand available in the NECP drafts, joint scenarios for Portugal and Spain are built with the latest CO2 allowances and fuel prices projections and the latest available historical data of hydro and renewable generation profiles. Simulations provide estimates for the expected market prices, technology generation dispatch, and the usage of the capacity of the interconnection lines between both countries, highlighting potential concerns and knowledge on future NECPs.

  • 105
  • 4028