Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

Understanding the Impact of Perceived Challenge on Narrative Immersion in Video Games: The Role-Playing Game Genre as a Case Study

Autores
Domingues, JM; Filipe, V; Carita, A; Carvalho, V;

Publicação
INFORMATION

Abstract
This paper explores the intricate interplay between perceived challenge and narrative immersion within role-playing game (RPG) video games, motivated by the escalating influence of game difficulty on player choices. A quantitative methodology was employed, utilizing three specific questionnaires for data collection on player habits and experiences, perceived challenge, and narrative immersion. The study consisted of two interconnected stages: an initial research phase to identify and understand player habits, followed by an in-person intervention involving the playing of three distinct RPG video games. During this intervention, selected players engaged with the chosen RPG video games separately, and after each session, responded to two surveys assessing narrative immersion and perceived challenge. The study concludes that a meticulous adjustment of perceived challenge by video game studios moderately influences narrative immersion, reinforcing the enduring prominence of the RPG genre as a distinctive choice in narrative.

2024

Radiological Medical Imaging Annotation and Visualization Tool

Autores
Teiga, I; Sousa, JV; Silva, F; Pereira, T; Oliveira, HP;

Publicação
UNIVERSAL ACCESS IN HUMAN-COMPUTER INTERACTION, PT III, UAHCI 2024

Abstract
Significant medical image visualization and annotation tools, tailored for clinical users, play a crucial role in disease diagnosis and treatment. Developing algorithms for annotation assistance, particularly machine learning (ML)-based ones, can be intricate, emphasizing the need for a user-friendly graphical interface for developers. Many software tools are available to meet these requirements, but there is still room for improvement, making the research for new tools highly compelling. The envisioned tool focuses on navigating sequences of DICOM images from diverse modalities, including Magnetic Resonance Imaging (MRI), Computed Tomography (CT) scans, Ultrasound (US), and X-rays. Specific requirements involve implementing manual annotation features such as freehand drawing, copying, pasting, and modifying annotations. A scripting plugin interface is essential for running Artificial Intelligence (AI)-based models and adjusting results. Additionally, adaptable surveys complement graphical annotations with textual notes, enhancing information provision. The user evaluation results pinpointed areas for improvement, including incorporating some useful functionalities, as well as enhancements to the user interface for a more intuitive and convenient experience. Despite these suggestions, participants praised the application's simplicity and consistency, highlighting its suitability for the proposed tasks. The ability to revisit annotations ensures flexibility and ease of use in this context.

2024

CO2 Emissions Resulting from Large-Scale Integration of Electric Vehicles Using a Macro Perspective

Autores
Monteiro, F; Sousa, A;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Smart grids with EVs have been proposed as a great contribution to sustainability. Considering environmental sustainability is of great importance to humanity, it is essential to assess whether electrical vehicles (EVs) actually contribute to improving it. The objectives of the present study are, from a macro (broad-scope) perspective, to identify the sources of emissions and to create a framework for the calculation of CO2 emissions resulting from large-scale EV use. The results show that V2G mode increases emissions and therefore reduces the benefits of using EVs. The results also show that in the best scenario (NC mode), an EV will have 32.7% less emissions, and in the worst case (V2G mode), it will have 25.6% more emissions than an internal combustion vehicle (ICV), meaning that sustainability improvement is not always ensured. The present study shows that considering a macro perspective is essential to estimate a more comprehensive value of emissions. The main contributions of this work are the creation of a framework for identifying the main contributions to CO2 emissions resulting from large-scale EV integration, and the calculation of estimated CO2 emissions from a macro perspective. These are important contributions to future studies in the area of smart grids and large-scale EV integration, for decision-makers as well as common citizens.

2024

Hierarchical growth in neural networks structure: Organizing inputs by Order of Hierarchical Complexity (vol 19, e0308115, 2024)

Autores
Leite, S; Mota, B; Silva, AR; Commons, ML; Miller, PM; Rodrigues, PP;

Publicação
PLOS ONE

Abstract
Several studies demonstrate that the structure of the brain increases in hierarchical complexity throughout development. We tested if the structure of artificial neural networks also increases in hierarchical complexity while learning a developing task, called the balance beam problem. Previous simulations of this developmental task do not reflect a necessary premise underlying development: a more complex structure can be built out of less complex ones, while ensuring that the more complex structure does not replace the less complex one. In order to address this necessity, we segregated the input set by subsets of increasing Orders of Hierarchical Complexity. This is a complexity measure that has been extensively shown to underlie the complexity behavior and hypothesized to underlie the complexity of the neural structure of the brain. After segregating the input set, minimal neural network models were trained separately for each input subset, and adjacent complexity models were analyzed sequentially to observe whether there was a structural progression. Results show that three different network structural progressions were found, performing with similar accuracy, pointing towards self-organization. Also, more complex structures could be built out of less complex ones without substituting them, successfully addressing catastrophic forgetting and leveraging performance of previous models in the literature. Furthermore, the model structures trained on the two highest complexity subsets performed better than simulations of the balance beam present in the literature. As a major contribution, this work was successful in addressing hierarchical complexity structural growth in neural networks, and is the first that segregates inputs by Order of Hierarchical Complexity. Since this measure can be applied to all domains of data, the present method can be applied to future simulations, systematizing the simulation of developmental and evolutionary structural growth in neural networks.

2024

Best practices, performance advantage and trade-offs: new insights from frontier analysis

Autores
Sousa, R; Camanho, AS; Silva, MC; da Silveira, GJC; Arabi, B;

Publicação
JOURNAL OF PRODUCTIVITY ANALYSIS

Abstract
There are still important theoretical and empirical gaps in understanding the role of best practices (BPs), such as quality management, lean and new product development, in generating firm's performance advantage and overcoming trade-offs across distinct performance dimensions. We examine these issues through the perspective of performance frontiers, integrating in novel ways the resource-based theory with the emergent practice-based view. Hypotheses on relationships between BPs, performance advantage, and trade-offs are developed and tested with stationary and longitudinal (recall) data from a global survey of manufacturing firms. We use data envelopment analysis, which overcomes limitations of mainstream methods based on central tendency. Our findings support the view that BPs may serve as a source of enduring competitive advantage, based on their ability to lead to a heterogeneous range of dominant and difficult-to-imitate competitive positions. The study provides new insights on contemporary debates about the role of BPs in generating performance advantage and how practitioners can sustain internal support and extract benefits from them.

2024

VPP Participation in the FCR Cooperation Considering Opportunity Costs

Autores
Ribeiro, FJ; Lopes, JAP; Soares, FJ; Madureira, AG;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Currently, the transmission system operators (TSOs) from Portugal and Spain do not procure a frequency containment reserve (FCR) through market mechanisms. In this context, a virtual power plant (VPP) that aggregates sources, such as wind and solar power and hydrogen electrolyzers (HEs), would benefit from future participation in this ancillary service market. The methodology proposed in this paper allows for quantifying the revenues of a VPP that aggregates wind and solar power and HEs, considering the opportunity costs of these units when reserving power for FCR participation. The results were produced using real data from past FCR market sessions. Using market data from 2022, a VPP that aggregates half of the HEs and is expected to be connected in the country by 2025 will have revenues over EUR 800k, of which EUR 90k will be HEs revenues.

  • 11
  • 3948