2024
Autores
Ahmad, MW; Lucas, A; Carvalhosa, SMP;
Publicação
ENERGIES
Abstract
The integration of electric vehicles (EVs) into the power grid poses significant challenges and opportunities for energy management systems. This is especially concerning for parking lots or private building condominiums in which refurbishing is not possible or is costly. This paper presents a real-time monitoring approach to EV charging dynamics with battery storage support over a 24 h period. By simulating EV demand, state of charge (SOC), and charging and discharging events, we provide insights into the operational strategies for energy storage systems to ensure maximum charging simultaneity factor through internal power enhancement. The study uses a time-series analysis of EV demand, contrasting it with the battery's SOC, to dynamically adjust charging and discharging actions within the constraints of the upstream infrastructure capacity. The model incorporates parameters such as maximum power capacity, energy storage capacity, and charging efficiencies, to reflect realistic conditions. Results indicate that real-time SOC monitoring, coupled with adaptive charging strategies, can mitigate peak demands and enhance the system's responsiveness to fluctuating loads. This paper emphasizes the critical role of real-time data analysis in the effective management of energy resources in existing parking lots and lays the groundwork for developing intelligent grid-supportive frameworks in the context of growing EV adoption.
2024
Autores
Yumbla, J; Home Ortiz, J; Pinto, T; Catalao, JPS; Mantovani, JRS;
Publicação
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
This study proposes a strategy for short-term operational planning of active distribution systems to minimize operating costs and greenhouse gas (GHG) emissions. The strategy incorporates network reconfiguration, switchable capacitor bank operation, dispatch of fossil fuel-based and renewable distributed energy resources, energy storage devices, and a demand response program. Uncertain operational conditions, such as energy costs, power demand, and solar irradiation, are addressed using stochastic scenarios derived from historical data through a k-means technique. The mathematical formulation adopts a stochastic scenario-based mixed-integer second-order conic programming (MISOCP) model. To handle the computational complexity of the model, a neighborhood-based matheuristic approach (NMA) is introduced, employing reduced MISOCP models and a memory strategy to guide the optimization process. Results from 69 and 118-node distribution systems demonstrate reduced operational costs and GHG emissions. Moreover, the proposed NMA outperforms two commercial solvers. This work provides insights into optimizing the operation of distribution systems, yielding economic and environmental benefits.
2024
Autores
Torto, IR; Cardoso, JS; Teixeira, LF;
Publicação
Medical Imaging with Deep Learning, 3-5 July 2024, Paris, France.
Abstract
2024
Autores
Berger, GS; Mendes, J; Chellal, AA; Bonzatto, L; da Silva, YMR; Zorawski, M; Pereira, AI; Pinto, MF; Castro, J; Valente, A; Lima, J;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT I, OL2A 2023
Abstract
This paper presents an approach to address the challenges of manual inspection using multirotor Unmanned Aerial Vehicles (UAV) to detect olive tree flies (Bactrocera oleae). The study employs computer vision techniques based on the You Only Look Once (YOLO) algorithm to detect insects trapped in yellow chromotropic traps. Therefore, this research evaluates the performance of the YOLOv7 algorithm in detecting and quantify olive tree flies using images obtained from two different digital cameras in a controlled environment at different distances and angles. The findings could potentially contribute to the automation of insect pest inspection by UAV-based robotic systems and highlight potential avenues for future advances in this field. In view of the experiments conducted indoors, it was found that the Arducam IMX477 camera acquires images with greater clarity compared to the TelloCam, making it possible to correctly highlight the set of Bactrocera oleae in different prediction models. The presented results in this research demonstrate that with the introduction of data augmentation and auto label techniques on the set of images of Bactrocera oleae, it was possible to arrive at a prediction model whose average detection was 256 Bactrocera oleae in relation to the corresponding ground truth value to 270 Bactrocera oleae.
2024
Autores
Ferreira, HR; Santos, A; Mamede, HS;
Publicação
GOOD PRACTICES AND NEW PERSPECTIVES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 3, WORLDCIST 2024
Abstract
The speed and scale of technological change are raising concerns about the extent to which new technologies will radically transform workplaces. Competition for the best talent is being intensified, and talent management requires new approaches and innovative strategies for developing talent based on corporate culture and its unique properties. By implementing and adopting technology in Human Resources Management (HRM), organizations create a digital employee lifecycle that spans from the initial Hiring Process to encompassing areas such as Performance Management, Learning and Development until the Offboarding, shaping a Talent Management journey. Despite the implementation of technologies being a continuous practice observed in numerous organizations, there are still challenges. The HRM technological market has become massive, and concerns arise about adopting these technologies' costs, practicality, and purpose. Because of that, designing strategies for implementing technologies in HRM, specifically in talent management, is hard to overview. In this context, this document aims to present the necessity and significance in developing a framework that aggregates the implementation process of technologies in talent management supported by Design Science Research (DSR). The holistic perspective of the forthcoming framework consolidates insights into business challenges and their correlation with technology selection, technological capabilities, implementation procedures, as well as anticipated metrics and their impact.
2024
Autores
Hasler, CFS; Lourenço, EM; Tortelli, OL; Portelinha, RK;
Publicação
ELECTRIC POWER SYSTEMS RESEARCH
Abstract
This paper proposes to extend the fast-decoupled state estimation formulation to bring its well-known efficiency and benefits to the processing of networks with embedded FACTS devices. The proposed method approaches shunt-, series-, and shunt -series -type devices. The controller parameters are included as new active or reactive state variables, while controlled quantity values are included in the metering scheme of the decoupled approach. From the electrical model adopted for each device, the extended formulation is presented, and a modified fast-decoupled method is devised, seeking to ensure accuracy and impart robustness to the iterative solution. Simulation results conducted throughout the IEEE 30 -bus test system with distinct types of FACTS devices are used to validate and evaluate the performance of the proposed decoupled approaches.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.