Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

METFORD - Mutation tEsTing Framework fOR anDroid

Autores
Vincenzi, AMR; Kuroishi, PH; Bispo, J; da Veiga, ARC; da Mata, DRC; Azevedo, FB; Paiva, ACR;

Publicação
JOURNAL OF SYSTEMS AND SOFTWARE

Abstract
Mutation testing maybe used to guide test case generation and as a technique to assess the quality of test suites. Despite being used frequently, mutation testing is not so commonly applied in the mobile world. One critical challenge in mutation testing is dealing with its computational cost. Generating mutants, running test cases over each mutant, and analyzing the results may require significant time and resources. This research aims to contribute to reducing Android mutation testing costs. It implements mutation testing operators (traditional and Android-specific) according to mutant schemata (implementing multiple mutants into a single code file). It also describes an Android mutation testing framework developed to execute test cases and determine mutation scores. Additional mutation operators can be implemented in JavaScript and easily integrated into the framework. The overall approach is validated through case studies showing that mutant schemata have advantages over the traditional mutation strategy (one file per mutant). The results show mutant schemata overcome traditional mutation in all evaluated aspects with no additional cost: it takes 8.50% less time for mutant generation, requires 99.78% less disk space, and runs, on average, 6.45% faster than traditional mutation. Moreover, considering sustainability metrics, mutant schemata have 8,18% less carbon footprint than traditional strategy.

2025

A three-phase algorithm for the three-dimensional loading vehicle routing problem with split pickups and time windows

Autores
Leloup, E; Paquay, C; Pironet, T; Oliveira, JF;

Publicação
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
In a survey of Belgian logistics service providers, the efficiency of first-mile pickup operations was identified as a key area for improvement, given the increasing number of returns in e-commerce, which has a significant impact on traffic congestion, carbon emissions, energy consumption and operational costs. However, the complexity of first-mile pickup operations, resulting from the small number of parcels to be collected at each pickup location, customer time windows, and the need to efficiently accommodate the highly heterogeneous cargo inside the vans, has hindered the development of real-world solution approaches. This article tackles this operational problem as a vehicle routing problem with time windows, time-dependent travel durations, and split pickups and integrates practical 3D container loading constraints such as vertical and horizontal stability as well as amore realistic reachability constraint to replace the classical Last In First Out (LIFO) constraint. To solve it, we propose a three-phase heuristic based on a savings constructive heuristic, an extreme point concept for the loading aspect and a General Variable Neighborhood Search as an improvement phase for both routing and packing. Numerical experiments are conducted to assess the performance of the algorithm on benchmark instances and new instances are tested to validate the positive managerial impacts oncost when allowing split pickups and on driver working duration when extending customer time windows. In addition, we show the impacts of considering the reachability constraint oncost and of the variation of speed during peak hours on schedule feasibility.

2025

Improving LIBS-based mineral identification with Raman imaging and spectral knowledge distillation

Autores
Lopes, T; Cavaco, R; Capela, D; Dias, F; Teixeira, J; Monteiro, CS; Lima, A; Guimaraes, D; Jorge, PAS; Silva, NA;

Publicação
TALANTA

Abstract
Combining data from different sensing modalities has been a promising research topic for building better and more reliable data-driven models. In particular, it is known that multimodal spectral imaging can improve the analytical capabilities of standalone spectroscopy techniques through fusion, hyphenation, or knowledge distillation techniques. In this manuscript, we focus on the latter, exploring how one can increase the performance of a Laser-induced Breakdown Spectroscopy system for mineral classification problems using additional spectral imaging techniques. Specifically, focusing on a scenario where Raman spectroscopy delivers accurate mineral classification performance, we show how to deploy a knowledge distillation pipeline where Raman spectroscopy may act as an autonomous supervisor for LIBS. For a case study concerning a challenging Li-bearing mineral identification of spodumene and petalite, our results demonstrate the advantages of this method in improving the performance of a single-technique system. LIBS trained with labels obtained by Raman presents an enhanced classification performance. Furthermore, leveraging the interpretability of the model deployed, the workflow opens opportunities for the deployment of assisted feature discovery pipelines, which may impact future academic and industrial applications.

2025

DBD plasma-treated polyester fabric coated with doped PEDOT:PSS for thermoregulation

Autores
Magalhaes, C; Ribeiro, AI; Rodrigues, R; Meireles, A; Alves, AC; Rocha, J; de Lima, FP; Martins, M; Mitu, B; Satulu, V; Dinescu, G; Padrao, J; Zille, A;

Publicação
APPLIED SURFACE SCIENCE

Abstract
The manufacturing process of thermoregulation products with polyester (PES) fabric and conductive polymers such as poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) with proper wearability, comfort, and high performance is still a challenge due to low adhesion, environment instability and nonuniform coatings. This study presents a simple and effective method for producing thermoregulatory PES fabrics using the Joule heating effect. Textiles treated with dielectric barrier discharge (DBD) plasma were functionalized with PEDOT:PSS incorporating secondary dopants, such as dimethyl sulfoxide (DMSO) and glycerol (GLY). PEDOT:PSS was used because it does not compromise the mechanical properties of base materials. DBD plasma treatment was applied to PES to improve the substrate's functional groups and consequently increase adhesion and homogeneity of the PEDOT:PSS on the substrate. The polymer were applied to the textiles by dip-pad-drycure method ensuring uniform distribution and homogeneous heating of the materials. The samples' conductivity, impedance, potential and Joule effect, and their morphological, chemical and thermal properties were studied. Control samples without plasma treatment and secondary dopants were also prepared. The results showed that the DBD-treated samples, coated with 5 layers of PEDOT:PSS, doped with DMSO 7 % (w/v), displayed the best conductivity and Joule effect performance reaching 44.3 degrees C after 1 h.

2025

Maximisation of self-consumption in energy communities

Autores
Sousa, J; Lucas, A; Villar, J;

Publicação
IET Conference Proceedings

Abstract

2025

GAMFLEW: serious game to teach white-box testing

Autores
Silva, M; Paiva, ACR; Mendes, A;

Publicação
SOFTWARE QUALITY JOURNAL

Abstract
Software testing plays a fundamental role in software engineering, involving the systematic evaluation of software to identify defects, errors, and vulnerabilities from the early stages of the development process. Education in software testing is essential for students and professionals, as it promotes quality and favours the construction of reliable software solutions. However, motivating students to learn software testing may be a challenge. To overcome this, educators may incorporate some strategies into the teaching and learning process, such as real-world examples, interactive learning, and gamification. Gamification aims to make learning software testing more engaging for students by creating a more enjoyable experience. One approach that has proven effective is to use serious games. This paper presents a novel serious game to teach white-box testing test case design techniques, named GAMFLEW (GAMe For LEarning White-box testing). It describes the design, game mechanics, and its implementation. It also presents a preliminary evaluation experiment with students to assess the usability, learnability, and perceived problems, among other aspects. The results obtained are encouraging.

  • 2
  • 4027