2026
Autores
Pereira, MTR; e Oliveira, EDM; Amaral, AM; Pereira, G;
Publicação
IFIP Advances in Information and Communication Technology
Abstract
This project was developed to improve the cost estimation process of new products within the Product Development Department of a furniture manufacturer. This work involved developing a methodology using Machine Learning (ML) models trained on products’ existing data to predict the cost of new innovative ones based on similarities and given data. The ML models used were Linear Regression (LR), Light Gradient-Boosting Machine (LGBM), Random Forest (RF), and Support Vector Machine (SVM). The proposed methodology considers the estimation of the total cost of producing a product, which encompasses both material and operational costs. Throughout this project, several analyses were developed to identify and evaluate different independent variables that could explain the behaviour of these two cost components. The suitability of the different variables was studied by applying several ML models, and a set of functions that return an estimate of the cost as a function of these predictor variables was obtained. The proposed approach, which incorporates ML models into more complex variables to predict, resulted in a 19.29% reduction in estimation error. © 2025 Elsevier B.V., All rights reserved.
2026
Autores
Santos, MJ; Jorge, D; Bonomi, V; Ramos, T; Póvoa, A;
Publicação
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH
Abstract
Today, logistics activities are driven by the pressing need to simultaneously increase efficiency, reduce costs, and promote sustainability. In our research, we tackle this challenge by adapting a general vehicle routing problem with deliveries and pickups to accommodate different types of customers. Customers requiring both delivery and pickup services are mandatory, while those needing only a pickup service (backhaul customers) are optional and are only visited if profitable. A mixed-integer linear programming model is formulated to minimize fuel consumption. This model can address various scenarios, such as allowing mandatory customers to be served with combined or separate delivery or pickup visits, and visiting optional customers either during or only after mandatory customer visits. An adaptive large neighborhood search is developed to solve instances adapted from the literature as well as to solve a real-case study of a beverage distributor. The results show the effectiveness of our approach, demonstrating the potential to utilize the available capacity on vehicles returning to the depot to create profitable and environmentally friendly routes, and so enhancing efficient, cost-effective, and sustainable logistics activities.
2026
Autores
Li, Q; Xie, M; Tokhi, MO; Silva, MF;
Publicação
Lecture Notes in Networks and Systems
Abstract
2026
Autores
Silva, MF; Tokhi, MO; Ferreira, MIA; Malheiro, B; Guedes, P; Ferreira, P; Costa, MT;
Publicação
Lecture Notes in Networks and Systems
Abstract
2026
Autores
Malheiro, B; Guedes, P; F Silva, MF; Ferreira, PD;
Publicação
Lecture Notes in Networks and Systems
Abstract
The European Project Semester (EPS), offered by the Instituto Superior de Engenharia do Porto (ISEP), is a capstone programme designed for undergraduate students in engineering, product design, and business. EPS@ISEP fosters project-based learning, promotes multicultural and interdisciplinary teamwork, and ethics- and sustainability-driven design. This study applies Natural Language Processing techniques, specifically text mining, to analyse project papers produced by EPS@ISEP teams. The proposed method aims to identify evidence of ethical concerns within EPS@ISEP projects. An innovative keyword mapping approach is introduced that first defines and refines a list of ethics-related keywords through prompt engineering. This enriched list of keywords is then used to systematically map the content of project papers. The findings indicate that the EPS@ISEP robotics project papers analysed demonstrate awareness of ethical considerations and actively incorporate them into design processes. The method presented is adaptable to various application areas, such as monitoring compliance with responsible innovation or sustainability policies. © 2025 Elsevier B.V., All rights reserved.
2026
Autores
Silva, P; Macedo, N; Oliveira, JN;
Publicação
Lecture Notes in Computer Science
Abstract
A key feature of model finding techniques allows users to enumerate and explore alternative solutions. However, it is challenging to guarantee that the generated instances are relevant to the user, representing effectively different scenarios. This challenge is exacerbated in quantitative modelling, where one must consider both the qualitative, structural part of a model, and the quantitative data on top of it. This results in a search space of possibly infinite candidate solutions, often infinitesimally similar to one another. Thus, research on instance enumeration in qualitative model finding is not directly applicable to the quantitative context, which requires more sophisticated methods to navigate the solution space effectively. The main goal of this paper is to explore a generic approach for navigating quantitative solution spaces and showcase different iteration operations, aiming to generate instances that differ considerably from those previously seen and promote a larger coverage of the search space. Such operations are implemented in QAlloy – a quantitative extension to Alloy – on top of Max-SMT solvers, and are evaluated against several examples ranging, in particular, over the integer and fuzzy domains. © 2025 Elsevier B.V., All rights reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.