2026
Autores
Araújo, A; de Jesus, G; Nunes, S;
Publicação
Lecture Notes in Computer Science
Abstract
Developing information retrieval (IR) systems that enable access across multiple languages is crucial in multilingual contexts. In Timor-Leste, where Tetun, Portuguese, English, and Indonesian are official and working languages, no cross-lingual information retrieval (CLIR) solutions currently exist to support information access across these languages. This study addresses that gap by investigating CLIR approaches tailored to the linguistic landscape of Timor-Leste. Leveraging an existing monolingual Tetun document collection and ad-hoc text retrieval baselines, we explore the feasibility of CLIR for Tetun. Queries were manually translated into Portuguese, English, and Indonesian to create a multilingual query set. These were then automatically translated back into Tetun using Google Translate and several large language models, and used to retrieve documents in Tetun. Results show that Google Translate is the most reliable tool for Tetun CLIR overall, and the Hiemstra LM consistently outperforms BM25 and DFR BM25 in cross-lingual retrieval performance. However, overall effectiveness remains up to 26.95% points lower than that of the monolingual baseline, underscoring the limitations of current translation tools and the challenges of developing an effective CLIR for Tetun. Despite these challenges, this work establishes the first CLIR baseline for Tetun ad-hoc text retrieval, providing a foundation for future research in this under-resourced setting. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2026
Autores
Sousa, P; Campai, D; Andrade, J; Pereira, P; Goncalves, T; Teixeira, LF; Pereira, T; Oliveira, HP;
Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT II
Abstract
Cancer is a leading cause of mortality worldwide, with breast and lung cancer being the most prevalent globally. Early and accurate diagnosis is crucial for successful treatment, and medical imaging techniques play a pivotal role in achieving this. This paper proposes a novel pipeline that leverages generative artificial intelligence to enhance medical images by combining synthetic image generation and super-resolution techniques. The framework is validated in two medical use cases (breast and lung cancers), demonstrating its potential to improve the quality and quantity of medical imaging data, ultimately contributing to more precise and effective cancer diagnosis and treatment. Overall, although some limitations do exist, this paper achieved satisfactory results for an image size which is conductive to specialist analysis, and further expands upon this field's capabilities.
2026
Autores
Damas, J; Nunes, S;
Publicação
Lecture Notes in Computer Science
Abstract
Understanding user behavior in search systems is essential for improving retrieval effectiveness and user satisfaction. While prior research has extensively examined general-purpose web search engines, domain-specific contexts—such as sports information—remain comparatively underexplored. In this study, we analyze over 400,000 interaction log entries from a sports-oriented search engine collected over a two-week period. Our analysis combines classic query-level metrics (e.g., frequency distributions, query lengths) with a detailed examination of click behavior, including entropy-based intent variability and a custom query quality scoring model. Compared to established baselines from general and specialized search environments, we observe a high proportion of new and single-term queries, as well as a notable lack of representativeness among top queries. These findings reveal patterns shaped by the event-driven and entity-centric nature of sports content, offering actionable insights for the design of domain-specific retrieval systems. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2026
Autores
Nogueira, AFR; Oliveira, HP; Teixeira, LF;
Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT I
Abstract
The aim of this work is to explore normalising flows to detect anomalous behaviours which is an essential task mainly for surveillance systems-related applications. To accomplish that, a series of ablation studies were performed by varying the parameters of the Spatio-Temporal Graph Normalising Flows (STG-NF) model [3] and combining it with attention mechanisms. Out of all these experiments, it was only possible to improve the state-of-the-art result for the UBnormal dataset by 3.4 percentual points (pp), for the Avenue by 4.7 pp and for the Avenue-HR by 3.2 pp. However, further research remains urgent to find a model that can give the best performance across different scenarios. The inaccuracies of the pose tracking and estimation algorithm seems to be the main factor limiting the models' performance. The code is available at https://github.com/AnaFilipaNogueira/Abnormal-Human-Behaviour-Detection- using-Normalising-Flows-and- Attention-Mechanisms.
2026
Autores
Simoes, E; Simoes, AC; Rodrigues, JC; Lourenço, P;
Publicação
ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS. CYBER-PHYSICAL-HUMAN PRODUCTION SYSTEMS: HUMAN-AI COLLABORATION AND BEYOND, APMS 2025, PT I
Abstract
Companies are increasingly adopting technologies such as Robotic Process Automation (RPA) to reduce costs and improve productivity. RPA is deployed in areas like accounting, payroll, and finance to automate business processes. While RPA does not necessarily result in unemployment, it has notable effects on employees and company governance. This study explores the impact of RPA implementation on employees and company governance, using a qualitative methodology based on thirteen semi-structured interviews with RPA experts from four multinational companies. The results indicate that the impacts of RPA vary depending on the automation strategy adopted (task-oriented or process-oriented). In task-oriented strategies, citizen developers often play a central role, contributing to rapid implementation. In contrast, process-oriented strategies tend to rely on professional developers and require more structured governance. The findings also point out that RPA influences not only task execution but also employee upskilling, job role redefinition, and the evolution of governance models. The study proposes an integrated framework linking automation strategy, governance, upskilling, and employee adaptation, offering both practical insights and theoretical contributions to digital transformation research and for managing risks and enhancing workforce capabilities. It also advances academic understanding by linking real-world RPA implementations to organisational and technological impacts.
2026
Autores
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; Figueiredo, D; Souza, JP;
Publicação
ROBOTICS AND AUTONOMOUS SYSTEMS
Abstract
Robotic bin-picking is a critical operation in modern industry, which is characterised by the detection, selection, and placement of items from a disordered and cluttered environment, which can be boundary limited or not, e.g. bins, boxes or containers. In this context, perception systems are employed to localise, detect and estimate grasping points. Despite the considerable progress made, from analytical approaches to recent deep learning methods, challenges still remain. This is evidenced by the growing innovation proposing distinct solutions. This paper aims to review perception methodologies developed since 2009, providing detailed descriptions and discussions of their implementation. Additionally, it presents an extensive study, detailing each work, along with a comprehensive overview of the advancements in bin-picking perception.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.