2025
Autores
Ramalho, E; Lima, F; López-Maciel, M; Madaleno, M; Villar, J; Dias, MF; Botelho, A; Meireles, M; Robaina, M;
Publicação
RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Abstract
Electricity generation from wind energy is one of the main drivers of decarbonization in energy systems. However, installing wind farm facilities may have beneficial and harmful impacts on the habitat of living beings. This study reviews the literature based on economic analysis to identify the main externalities related to the installation of wind farms and the economic methodologies used to assess these externalities, filling an existent literature gap. A systematic literature review followed the Preferred Reporting Items on Systematic Reviews and Meta-analysis standards. A total of 33 studies were identified, most of them carried out in Europe. The studies cover 24 years, between 1998 and 2022. The externalities associated with wind electricity generation are classified into three categories: the impact on well-being, the impact of wind turbines, and the impacts of avoided externalities. Most studies (24 out of 33) determine economic values by stated preference methods through choice experiments, discrete choice experiments, and contingent valuation. Revealed preference methods were identified in 5 studies using hedonic pricing and travel cost techniques. The challenges and limitations of this analysis in terms of externalities identification and their assessment are also discussed, concluding that additional updated review studies are needed since the latest ones were published in 2016 and 2017. Moreover, it gives insights to policymakers and academics on a more complete approach they can use to evaluate the impacts of decarbonization, which, apart from the technological view, also considers and estimates the socio-economic and environmental perspectives.
2025
Autores
Reza, S; Ferreira, MC; Machado, JJM; Tavares, JMRS;
Publicação
EXPERT SYSTEMS
Abstract
An autonomous vehicle can sense its environment and operate without human involvement. Its adequate management in an intelligent transportation system could significantly reduce traffic congestion and overall travel time in a network. Adaptive traffic signal controller (ATSC) based on multi-agent systems using state-action-reward-state-action (SARSA (lambda)) are well-known state-of-the-art models to manage autonomous vehicles within urban areas. However, this study found inefficient weights updating mechanisms of the conventional SARSA (lambda) models. Therefore, it proposes a Gaussian function to regulate the eligibility trace vector's decay mechanism effectively. On the other hand, an efficient understanding of the state of the traffic environment is crucial for an agent to take optimal actions. The conventional models feed the state values to the agents through the MinMax normalization technique, which sometimes shows less efficiency and robustness. So, this study suggests the MaxAbs scaled state values instead of MinMax to address the problem. Furthermore, the combination of the A-star routing algorithm and proposed model demonstrated a good increase in performance relatively to the conventional SARSA (lambda)-based routing algorithms. The proposed model and the baselines were implemented in a microscopic traffic simulation environment using the SUMO package over a complex real-world-like 21-intersections network to evaluate their performance. The results showed a reduction of the vehicle's average total waiting time and total stops by a mean value of 59.9% and 17.55% compared to the considered baselines. Also, the A-star combined with the proposed controller outperformed the conventional approaches by increasing the vehicle's average trip speed by 3.4%.
2025
Autores
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;
Publicação
DATA MINING AND KNOWLEDGE DISCOVERY
Abstract
Multivariate time series analysis is a vital but challenging task, with multidisciplinary applicability, tackling the characterization of multiple interconnected variables over time and their dependencies. Traditional methodologies often adapt univariate approaches or rely on assumptions specific to certain domains or problems, presenting limitations. A recent promising alternative is to map multivariate time series into high-level network structures such as multiplex networks, with past work relying on connecting successive time series components with interconnections between contemporary timestamps. In this work, we first define a novel cross-horizontal visibility mapping between lagged timestamps of different time series and then introduce the concept of multilayer horizontal visibility graphs. This allows describing cross-dimension dependencies via inter-layer edges, leveraging the entire structure of multilayer networks. To this end, a novel parameter-free topological measure is proposed and common measures are extended for the multilayer setting. Our approach is general and applicable to any kind of multivariate time series data. We provide an extensive experimental evaluation with both synthetic and real-world datasets. We first explore the proposed methodology and the data properties highlighted by each measure, showing that inter-layer edges based on cross-horizontal visibility preserve more information than previous mappings, while also complementing the information captured by commonly used intra-layer edges. We then illustrate the applicability and validity of our approach in multivariate time series mining tasks, showcasing its potential for enhanced data analysis and insights.
2025
Autores
Gonçalves, C; Bessa, RJ; Teixeira, T; Vinagre, J;
Publicação
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY
Abstract
Accurate power forecasting from renewable energy sources (RES) is crucial for integrating additional RES capacity into the power system and realizing sustainability goals. This work emphasizes the importance of integrating decentralized spatio-temporal data into forecasting models. However, decentralized data ownership presents a critical obstacle to the success of such spatio-temporal models, and incentive mechanisms to foster data-sharing need to be considered. The main contributions are a) a comparative analysis of the forecasting models, advocating for efficient and interpretable spline LASSO regression models, and b) a bidding mechanism within the data/analytics market to ensure fair compensation for data providers and enable both buyers and sellers to express their data price requirements. Furthermore, an incentive mechanism for time series forecasting is proposed, effectively incorporating price constraints and preventing redundant feature allocation. Results show significant accuracy improvements and potential monetary gains for data sellers. For wind power data, an average root mean squared error improvement of over 10% was achieved by comparing forecasts generated by the proposal with locally generated ones.
2025
Autores
Ferreira, L; Bias, ED; Barros, QS; Pádua, L; Matricardi, EAT; Sousa, JJ;
Publicação
FORESTS
Abstract
Reduced-impact logging (RIL) has been recognized as a promising strategy for biodiversity conservation and carbon sequestration within sustainable forest management (SFM) areas. However, monitoring the forest understory-a critical area for assessing logging impacts-remains challenging due to limitations in conventional methods such as field inventories and global navigation satellite system (GNSS) surveys, which are time-consuming, costly, and often lack accuracy in complex environments. Additionally, aerial and satellite imagery frequently underestimate the full extent of disturbances as the forest canopy obscures understory impacts. This study examines the effectiveness of the relative density model (RDM), derived from airborne LiDAR data, for mapping and monitoring understory disturbances. A field-based validation of LiDAR-derived RDM was conducted across 25 sites, totaling 5504.5 hectares within the Jamari National Forest, Rond & ocirc;nia, Brazil. The results indicate that the RDM accurately delineates disturbances caused by logging infrastructure, with over 90% agreement with GNSS field data. However, the model showed the greatest discrepancy for skid trails, which, despite their lower accuracy in modeling, accounted for the largest proportion of the total impacted area among infrastructure. The findings include the mapping of 35.1 km of primary roads, 117.4 km of secondary roads, 595.6 km of skid trails, and 323 log landings, with skid trails comprising the largest proportion of area occupied by logging infrastructure. It is recommended that airborne LiDAR assessments be conducted up to two years post-logging, as impacts become less detectable over time. This study highlights LiDAR data as a reliable alternative to traditional monitoring approaches, with the ability to detect understory impacts more comprehensively for monitoring selective logging in SFM areas of the Amazon, providing a valuable tool for both conservation and climate mitigation efforts.
2025
Autores
Proença, J; Edixhoven, L;
Publicação
SCIENCE OF COMPUTER PROGRAMMING
Abstract
We present Caos: a programming framework for computer-aided design of structural operational semantics for formal models. This framework includes a set of Scala libraries and a workflow to produce visual and interactive diagrams that animate and provide insights over the structure and the semantics of a given abstract model with operational rules. Caos follows an approach where theoretical foundations and a practical tool are built together, as an alternative to foundations-first design (tool justifies theory) or tool-first design (foundations justify practice). The advantage of Caos is that the tool-under-development can immediately be used to automatically run numerous and sizeable examples in order to identify subtle mistakes, unexpected outcomes, and unforeseen limitations in the foundations-under-development, as early as possible. More concretely, Caos supports the quick creation of interactive websites that help the end-users better understand a new language, structure, or analysis. End-users can be research colleagues trying to understand a companion paper or students learning about a new simple language or operational semantics. We include a list of open-source projects with a web frontend supported by Caos that are used both in research and teaching contexts.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.