2025
Autores
Caetano, R; Oliveira, JM; Ramos, P;
Publicação
MATHEMATICS
Abstract
Accurate demand forecasting is essential for retail operations as it directly impacts supply chain efficiency, inventory management, and financial performance. However, forecasting retail time series presents significant challenges due to their irregular patterns, hierarchical structures, and strong dependence on external factors such as promotions, pricing strategies, and socio-economic conditions. This study evaluates the effectiveness of Transformer-based architectures, specifically Vanilla Transformer, Informer, Autoformer, ETSformer, NSTransformer, and Reformer, for probabilistic time series forecasting in retail. A key focus is the integration of explanatory variables, such as calendar-related indicators, selling prices, and socio-economic factors, which play a crucial role in capturing demand fluctuations. This study assesses how incorporating these variables enhances forecast accuracy, addressing a research gap in the comprehensive evaluation of explanatory variables within multiple Transformer-based models. Empirical results, based on the M5 dataset, show that incorporating explanatory variables generally improves forecasting performance. Models leveraging these variables achieve up to 12.4% reduction in Normalized Root Mean Squared Error (NRMSE) and 2.9% improvement in Mean Absolute Scaled Error (MASE) compared to models that rely solely on past sales. Furthermore, probabilistic forecasting enhances decision making by quantifying uncertainty, providing more reliable demand predictions for risk management. These findings underscore the effectiveness of Transformer-based models in retail forecasting and emphasize the importance of integrating domain-specific explanatory variables to achieve more accurate, context-aware predictions in dynamic retail environments.
2025
Autores
Palley, B; Martins, JP; Bernardo, H; Rossetti, R;
Publicação
URBAN SCIENCE
Abstract
Artificial Intelligence has recently expanded across various applications. Machine Learning, a subset of Artificial Intelligence, is a powerful technique for identifying patterns in data to support decision making and managing the increasing volume of information. Simultaneously, Digital Twins have been applied in several fields. In this context, combining Digital Twins, Machine Learning, and Smart Buildings offers significant potential to improve energy efficiency and operational effectiveness in building management. This review aims to identify and analyze studies that explore the application of Machine Learning and Digital Twins for operation and energy management in Smart Buildings, providing an updated perspective on these rapidly evolving topics. The methodology follows the PRISMA guidelines for systematic reviews, using Scopus and Web of Science databases. This review identifies the main concepts, objectives, and trends emerging from the literature. Furthermore, the findings confirm the recent growth in research combining Machine Learning and Digital Twins for building management, revealing diverse approaches, tools, methods, and challenges. Finally, this paper highlights existing research gaps and outlines opportunities for future investigation.
2025
Autores
Oliveira, PBD;
Publicação
IFAC PAPERSONLINE
Abstract
Rapidly evolving scientific and technological advances are introducing both exciting and disruptive educational tools. However, they also present new challenges in engaging and motivating students, particularly in courses with a strong mathematical foundation like control engineering. The first class of any course offers a prime opportunity to make a lasting impression that encourages active learning. This paper addresses the following question: How can the first feedback control class be transformed into a unique and memorable event that leaves a positive impact on students for the remainder of the course, and perhaps, ambitiously, for their lives? Copyright (c) 2025 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
2025
Autores
Nunes, D; Amorim, R; Ribeiro, P; Coelho, A; Campos, R;
Publicação
2025 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING, MEDITCOM
Abstract
This paper proposes FLUC, a modular framework that integrates open-source Large Language Models (LLMs) with Unmanned Aerial Vehicle (UAV) autopilot systems to enable autonomous control in Flying Networks (FNs). FLUC translates high-level natural language commands into executable UAV mission code, bridging the gap between operator intent and UAV behaviour. FLUC is evaluated using three open-source LLMs - Qwen 2.5, Gemma 2, and LLaMA 3.2 - across scenarios involving code generation and mission planning. Results show that Qwen 2.5 excels in multi-step reasoning, Gemma 2 balances accuracy and latency, and LLaMA 3.2 offers faster responses with lower logical coherence. A case study on energy-aware UAV positioning confirms FLUC's ability to interpret structured prompts and autonomously execute domain-specific logic, showing its effectiveness in real-time, mission-driven control.
2025
Autores
Costa, V; Oliveira, JM; Ramos, P;
Publicação
COMPUTATION
Abstract
Advancements in deep learning have revolutionized materials discovery by enabling predictive modeling of complex material properties. However, single-modal approaches often fail to capture the intricate interplay of compositional, structural, and morphological characteristics. This study introduces a novel multimodal deep learning framework for enhanced material property prediction, integrating textual (chemical compositions), tabular (structural descriptors), and image-based (2D crystal structure visualizations) modalities. Utilizing the Alexandriadatabase, we construct a comprehensive multimodal dataset of 10,000 materials with symmetry-resolved crystallographic data. Specialized neural architectures, such as FT-Transformer for tabular data, Hugging Face Electra-based model for text, and TIMM-based MetaFormer for images, generate modality-specific embeddings, fused through a hybrid strategy into a unified latent space. The framework predicts seven critical material properties, including electronic (band gap, density of states), thermodynamic (formation energy, energy above hull, total energy), magnetic (magnetic moment per volume), and volumetric (volume per atom) features, many governed by crystallographic symmetry. Experimental results demonstrated that multimodal fusion significantly outperforms unimodal baselines. Notably, the bimodal integration of image and text data showed significant gains, reducing the Mean Absolute Error for band gap by approximately 22.7% and for volume per atom by 22.4% compared to the average unimodal models. This combination also achieved a 28.4% reduction in Root Mean Squared Error for formation energy. The full trimodal model (tabular + images + text) yielded competitive, and in several cases the lowest, error metrics, particularly for band gap, magnetic moment per volume and density of states per atom, confirming the value of integrating all three modalities. This scalable, modular framework advances materials informatics, offering a powerful tool for data-driven materials discovery and design.
2025
Autores
Carvalhosa, S; Ferreira, JR; Araújo, RE;
Publicação
ENERGIES
Abstract
As electric vehicle (EV) adoption accelerates, residential buildings-particularly multi-dwelling structures-face increasing challenges to electrical infrastructure, notably due to conservative sizing practices of electrical feeders based on maximum simultaneous demand. Current sizing methods assume all EVs charge simultaneously at maximum capacity, resulting in unnecessarily oversized and costly electrical installations. This study proposes an optimized methodology to estimate accurate coincidence factors, leveraging simulations of EV user charging behaviors in multi-dwelling residential environments. Charging scenarios considering different fleet sizes (1 to 70 EVs) were simulated under two distinct premises of charging: minimization of current allocation to achieve the desired battery state-of-charge and maximization of instantaneous power delivery. Results demonstrate significant deviations from conventional assumptions, with estimated coincidence factors decreasing non-linearly as fleet size increases. Specifically, applying the derived coincidence factors can reduce feeder section requirements by up to 86%, substantially lowering material costs. A fuzzy logic inference model is further developed to refine these estimates based on fleet characteristics and optimization preferences, providing a practical tool for infrastructure planners. The results were compared against other studies and real-life data. Finally, the proposed methodology thus contributes to more efficient, cost-effective design strategies for EV charging infrastructures in residential buildings.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.