Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

A One-Step Methodology for Identifying Concrete Pathologies Using Neural Networks-Using YOLO v8 and Dataset Review

Autores
Diniz, JDN; de Paiva, AC; Braz, G Jr; de Almeida, JDS; Silva, AC; Cunha, AMTD; Cunha, SCAPD;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Pathologies in concrete structures can be visually evidenced on the concrete surface, such as by fissures or cracks, fragmentation of part of the concrete, concrete efflorescence, corrosion stains on the concrete surface, or exposed steel bars, the latter two occurring in reinforced concrete. Therefore, these pathologies can be analyzed via the images of concrete structures. This article proposes a methodology for visually inspecting concrete structures using deep neural networks. This method makes it possible to speed up the detection task and increase its effectiveness by saving time in preparing the identifications to be analyzed and eliminating or reducing errors, such as those resulting from human errors caused by the execution of tedious, repetitive analysis tasks. The methodology was tested to analyze its accuracy. The neural network architecture used for detection was YOLO, versions 4 and 8, which was tested to analyze the gain with migration to a more recent version. The dataset for classification was Ozgnel, which was trained with YOLO version 8, and the detection dataset was CODEBRIM. The use of a dedicated classification dataset allows for a better-trained network for this function and results in the elimination of false positives in the detection stage. The classification achieved 99.65% accuracy.

2024

A Machine Learning as a Service (MLaaS) Approach to Improve Marketing Success

Autores
Pereira, I; Madureira, A; Bettencourt, N; Coelho, D; Rebelo, MA; Araújo, C; de Oliveira, DA;

Publicação
INFORMATICS-BASEL

Abstract
The exponential growth of data in the digital age has led to a significant demand for innovative approaches to assess data in a manner that is both effective and efficient. Machine Learning as a Service (MLaaS) is a category of services that offers considerable potential for organisations to extract valuable insights from their data while reducing the requirement for heavy technical expertise. This article explores the use of MLaaS within the realm of marketing applications. In this study, we provide a comprehensive analysis of MLaaS implementations and their benefits within the domain of marketing. Furthermore, we present a platform that possesses the capability to be customised and expanded to address marketing's unique requirements. Three modules are introduced: Churn Prediction, One-2-One Product Recommendation, and Send Frequency Prediction. When applied to marketing, the proposed MLaaS system exhibits considerable promise for use in applications such as automated detection of client churn prior to its occurrence, individualised product recommendations, and send time optimisation. Our study revealed that AI-driven campaigns can improve both the Open Rate and Click Rate. This approach has the potential to enhance customer engagement and retention for businesses while enabling well-informed decisions by leveraging insights derived from consumer data. This work contributes to the existing body of research on MLaaS in marketing and offers practical insights for businesses seeking to utilise this approach to enhance their competitive edge in the contemporary data-oriented marketplace.

2024

Unlocking the potential of digital twins to achieve sustainability in seaports: the state of practice and future outlook

Autores
Homayouni, SM; de Sousa, JP; Marques, CM;

Publicação
WMU JOURNAL OF MARITIME AFFAIRS

Abstract
This paper examines the role of digital twins (DTs) in promoting sustainability within seaport operations and logistics. DTs have emerged as promising tools for enhancing seaport performance. Despite the recognized potential of DTs in seaports, there is a paucity of research on their practical implementation and impact on seaport sustainability. Through a systematic literature review, this study seeks to elucidate how DTs contribute to the sustainability of seaports and to identify future research and practical applications. We reviewed and categorized 68 conceptual and practical digital applications into ten core areas that effectively support economic, social, and environmental objectives in seaports. Furthermore, this paper proposes five preliminary potential applications for DTs where practical implementations are currently lacking. The primary findings indicate that DTs can enhance seaport sustainability by facilitating real-time monitoring and decision-making, improving safety and security, optimizing resource utilization, enhancing collaboration and communication, and supporting the development of the seaport ecosystem. Additionally, this study addresses the challenges associated with DT implementation, including high costs, conflicting stakeholder priorities, data quality and availability, and model validation. The paper concludes with a discussion of the implications for seaport managers and policymakers.

2024

Predicting weight dispersion in seabass aquaculture using Discrete Event System simulation and Machine Learning modeling

Autores
Navarro, LC; Azevedo, A; Matos, A; Rocha, A; Ozorio, R;

Publicação
AQUACULTURE REPORTS

Abstract
Marine aquaculture, particularly in the Mediterranean region, faces the challenge of minimizing growth dispersion, which has a direct impact on the production cycle, market value and sustainability of the sector. Conventional grading methods are resource intensive and potentially detrimental to fish health. The current study presented an innovative approach in predicting fish weight dispersion in European seabass (Dicentrarchus labrax) aquaculture. Seabass is one of the two major fish species cultivated on the Mediterranean coast, with a fattening cycle of 18-24 months. During this period, several grading operations are carried out to minimize growth dispersion. The intricate feed-fish-water system, characterized by complex interactions among feeding regimes, fish behavior, individual metabolism and environmental factors, is the focus of the study. The comprehensive, five-step methodology addresses this complexity. The process begins with a Discrete Event System (DES) model that simulates the feed-fish-water dynamics, taking into account individual fish metabolism. This is followed by the development of a surrogate machine learning (ML) regressor model, which is trained on DES simulation data to efficiently predict growth distribution. The model is then calibrated and customized for specific fish stocks and production tanks. The preliminary results from 21 tanks in two trials with European seabass (D. labrax) showed the effectiveness of the method. The results from the simulation models achieved a R2 of 99.9 % and a Mean Absolute Percentage Error (MAPE) of 1.1 % for the prediction of mean final weight and a R2 of 90.3 % with a MAPE of 8.1 % for the standard deviation of final weight. In summary, this study represents a significant advance in the planning and management of seabass aquaculture. Given the lack of effective prediction tools in the aquaculture industry, the proposed methodology has the potential to reduce risks and inefficiencies, thus possibly optimizing aquaculture practices by increasing sustainability and profitability.

2024

Online Detection and Infographic Explanation of Spam Reviews with Data Drift Adaptation

Autores
Arriba Pérez, Fd; Méndez, SG; Leal, F; Malheiro, B; Burguillo, JC;

Publicação
Informatica

Abstract

2024

Predicting macroeconomic indicators from online activity data: A review

Autores
Costa, EA; Silva, ME;

Publicação
Statistical Journal of the IAOS

Abstract
Predictors of macroeconomic indicators rely primarily on traditional data sourced from National Statistical Offices. However, new data sources made available from recent technological advancements, namely data from online activities, have the potential to bring about fresh perspectives on monitoring economic activities and enhance the accuracy of forecasting. This paper reviews the literature on predicting macroeconomic indicators, such as the gross domestic product, unemployment rate, consumer price index or private consumption, based on online activity data sourced from Google Trends, Twitter (rebranded to X) and mobile devices. Based on a systematic search of publications indexed on the Web of Science and Scopus databases, the analysis of a final set of 56 publications covers the publication history of the data sources, the methods used to model the data and the predictive accuracy of information from such data sources. The paper also discusses the limitations and challenges of using online activity data for macroeconomic predictions. The review concludes that online activity data can be a valuable source of information for predicting macroeconomic indicators. However, one must consider certain limitations and challenges to improve the models' accuracy and reliability. © 2024 - IOS Press. All rights reserved.

  • 39
  • 3957