Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

Hybrid renewable energy system optimisation for application in the winemaking sector

Autores
Teixeira, R; Cerveira, A; Silva, A; Baptista, J;

Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
The objective of achieving carbon neutrality by 2050 requires the various sectors of the economy to actively participate in the decarbonisation of all their activities, from production to consumption and product distribution. The vineyard and wine production sector is no exception to this goal. This paper aims to evaluate the feasibility and efficiency that hybrid energy systems based on renewable energy sources, solar photovoltaic (PV) and wind, can contribute to energy efficiency in certain activities related to wine production. In this sense, this study presents results based on linear programming optimisation models, which show how effective they are in minimising the use of energy from the power grid. The results show that renewable hybrid energy systems based on PV and wind are an effective solution for achieving carbon neutrality in some agricultural sectors, particularly winemaking sector. Besides being able to minimise the energy bought from the grid, the hybrid renewable energy system (HRES) is almost self-sufficient, being able to produce 340,232 kWh over 25 years.

2024

The Effect of the TiO2 Anodization Layer in Pedicle Screw Conductivity: An Analytical, Numerical, and Experimental Approach

Autores
Fonseca, P; Goethel, MF; Vilas-Boas, JP; Gutierres, M; Correia, MV;

Publicação
BIOENGINEERING-BASEL

Abstract
The electrical stimulation of pedicle screws is a technique used to ensure its correct placement within the vertebrae pedicle. Several authors have studied these screws' electrical properties with the objective of understanding if they are a potential source of false negatives. As titanium screws are anodized with different thicknesses of a high electrical resistance oxide (TiO2), this study investigated, using analytical, numerical, and experimental methods, how its thickness may affect pedicle screw's resistance and conductivity. Analytical results have demonstrated that the thickness of the TiO2 layer does result in a significant radial resistance increase (44.21 m Omega/nm, for & Oslash; 4.5 mm), and a decrease of conductivity with layers thicker than 150 nm. The numerical approach denotes that the geometry of the screw further results in a decrease in the pedicle screw conductivity, especially after 125 nm. Additionally, the experimental results demonstrate that there is indeed an effective decrease in conductivity with an increase in the TiO2 layer thickness, which is also reflected in the screw's total resistance. While the magnitude of the resistance associated with each TiO2 layer thickness may not be enough to compromise the ability to use anodized pedicle screws with a high-voltage electrical stimulator, pedicle screws should be the subject of more frequent electrical characterisation studies.

2024

Multiprotocol Middleware Translator for IoT

Autores
Cabral, B; Venâncio, R; Costa, P; Fonseca, T; Ferreira, LL; Severino, R; Barros, A;

Publicação
27th Euromicro Conference on Digital System Design, DSD 2024, Paris, France, August 28-30, 2024

Abstract
The increasing number of IoT deployment scenarios and applications fostered the development of a multitude of specially crafted communication solutions, several proprietary, which are erecting barriers to IoT interoperability, impairing their pervasiveness. To address such problems, several middleware solutions exist to standardize IoT communications, hence promoting and facilitating interoperability. Although being increasingly adopted in most IoT systems, it became clear that there was no 'one size fits all' solution that could address the multiple Quality-of-Service heterogeneous IoT systems may impose. Consequently, we witness new interoperability challenges regarding the usage of diverse middleware. In this work, we address this issue by proposing a novel architecture - the PolyglIoT, that can effectively interconnect diverse middleware solutions while considering the delivery QoS requirements alongside the proposed translation. We analyze the performance and robustness of the solution and show that such Multiprotocol Translator is feasible and can achieve a high performance, thus becoming a fundamental piece to enable future highly heterogeneous IoT systems of systems. © 2024 IEEE.

2024

Contrastive text summarization: a survey

Autores
Ströhle, T; Campos, R; Jatowt, A;

Publicação
Int. J. Data Sci. Anal.

Abstract

2024

Towards truly sustainable IoT systems: the SUPERIOT project

Autores
Katz, M; Paso, T; Mikhaylov, K; Pessoa, L; Fontes, H; Hakola, L; Leppaeniemi, J; Carlos, E; Dolmans, G; Rufo, J; Drzewiecki, M; Sallouha, H; Napier, B; Branquinho, A; Eder, K;

Publicação
JOURNAL OF PHYSICS-PHOTONICS

Abstract
This paper provides an overview of the SUPERIOT project, an EU SNS JU (Smart Networks and Services Joint Undertaking) initiative focused on developing truly sustainable IoT systems. The SUPERIOT concept is based on a unique holistic approach to sustainability, proactively developing sustainable solutions considering the design, implementation, usage and disposal/reuse stages. The concept exploits radio and optical technologies to provide dual-mode wireless connectivity and dual-mode energy harvesting as well as dual-mode IoT node positioning. The implementation of the IoT nodes or devices will maximize the use of sustainable printed electronics technologies, including printed components, conductive inks and substrates. The paper describes the SUPERIOT concept, covering the key technical approaches to be used, promising scenarios and applications, project goals and demonstrators which will be developed to the proof-of-concept stage. In addition, the paper briefly discusses some important visions on how this technology may be further developed in the future.

2024

Modal Pitch Space: A Computational Model of Melodic Pitch Attraction in Folk Music

Autores
Bernardes, G; Carvalho, N;

Publicação
MATHEMATICS AND COMPUTATION IN MUSIC, MCM 2024

Abstract
We introduce a computational model that quantifies melodic pitch attraction in diatonic modal folk music, extending Lerdahl's Tonal Pitch Space. The model incorporates four melodic pitch indicators: vertical embedding distance, horizontal step distance, semitone interval distance, and relative stability. Its scalability is exclusively achieved through prior mode and tonic information, eliminating the need in existing models for additional chordal context. Noteworthy contributions encompass the incorporation of empirically-driven folk music knowledge and the calculation of indicator weights. Empirical evaluation, spanning Dutch, Irish, and Spanish folk traditions across Ionian, Dorian, Mixolydian, and Aeolian modes, uncovers a robust linear relationship between melodic pitch transitions and the pitch attraction model infused with empirically-derived knowledge. Indicator weights demonstrate cross-tradition generalizability, highlighting the significance of vertical embedding distance and relative stability. In contrast, semitone and horizontal step distances assume residual and null functions, respectively.

  • 43
  • 3957