2025
Autores
Silva, F; Oliveira, HP; Pereira, T;
Publicação
ACM COMPUTING SURVEYS
Abstract
The large gap between the generalization level of state-of-the-art machine learning and human learning systems calls for the development of artificial intelligence (AI) models that are truly inspired by human cognition. In tasks related to image analysis, searching for pixel-level regularities has reached a power of information extraction still far from what humans capture with image-based observations. This leads to poor generalization when even small shifts occur at the level of the observations. We explore a perspective on this problem that is directed to learning the generative process with causality-related foundations, using models capable of combining symbolic manipulation, probabilistic reasoning, and pattern recognition abilities. We briefly review and explore connections of research from machine learning, cognitive science, and related fields of human behavior to support our perspective for the direction to more robust and human-like artificial learning systems.
2025
Autores
Matos, T; Rocha, JL; Martins, MS; Goncalves, LM;
Publicação
JOURNAL OF MARINE SCIENCE AND ENGINEERING
Abstract
The need for real-time and scalable oceanographic monitoring has become crucial for coastal management, marine traffic control and environmental sustainability. This study investigates the integration of sensor technology into marine cables to enable real-time monitoring, focusing on tidal cycles and wave characteristics. A 2000 m cable demonstrator was deployed off the coast of Portugal, featuring three active repeater nodes equipped with pressure sensors at varying depths. The goal was to estimate hourly wave periods using fast Fourier transform and calculate significant wave height via a custom peak detection algorithm. The results showed strong coherence with tidal depth variations, with wave period estimates closely aligning with forecasts. The wave height estimations exhibited a clear relationship with tidal cycles, which demonstrates the system's sensitivity to coastal hydrodynamics, a factor that numerical models designed for open waters often fail to capture. The study also highlights challenges in deep-water monitoring, such as signal attenuation and the need for high sampling rates. Overall, this research emphasises the scalability of sensor-integrated smart marine cables, offering a transformative opportunity to expand oceanographic monitoring capabilities. The findings open the door for future real-time ocean monitoring systems that can deliver valuable insights for coastal management, environmental monitoring and scientific research.
2025
Autores
Freitas, F; Brazdil, P; Soares, C;
Publicação
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS
Abstract
Many current AutoML platforms include a very large space of alternatives (the configuration space). This increases the probability of including the best one for any dataset but makes the task of identifying it for a new dataset more difficult. In this paper, we explore a method that can reduce a large configuration space to a significantly smaller one and so help to reduce the search time for the potentially best algorithm configuration, with limited risk of significant loss of predictive performance. We empirically validate the method with a large set of alternatives based on five ML algorithms with different sets of hyperparameters and one preprocessing method (feature selection). Our results show that it is possible to reduce the given search space by more than one order of magnitude, from a few thousands to a few hundred items. After reduction, the search for the best algorithm configuration is about one order of magnitude faster than on the original space without significant loss in predictive performance.
2025
Autores
Montenegro, H; Cardoso, MJ; Cardoso, JS;
Publicação
CoRR
Abstract
2025
Autores
Vieira, AB; Valente, M; Montezuma, D; Albuquerque, T; Ribeiro, L; Oliveira, D; Monteiro, JC; Gonçalves, S; Pinto, IM; Cardoso, JS; Oliveira, AL;
Publicação
CoRR
Abstract
2025
Autores
Roberto, GF; Pereira, DC; Martins, AS; Tosta, TAA; Soares, C; Lumini, A; Rozendo, GB; Neves, LA; Nascimento, MZ;
Publicação
PATTERN RECOGNITION LETTERS
Abstract
Covid-19 is a severe illness caused by the Sars-CoV-2 virus, initially identified in China in late 2019 and swiftly spreading globally. Since the virus primarily impacts the lungs, analyzing chest X-rays stands as a reliable and widely accessible means of diagnosing the infection. In computer vision, deep learning models such as CNNs have been the main adopted approach for detection of Covid-19 in chest X-ray images. However, we believe that handcrafted features can also provide relevant results, as shown previously in similar image classification challenges. In this study, we propose a method for identifying Covid-19 in chest X-ray images by extracting and classifying local and global percolation-based features. This technique was tested on three datasets: one comprising 2,002 segmented samples categorized into two groups (Covid-19 and Healthy); another with 1,125 non-segmented samples categorized into three groups (Covid-19, Healthy, and Pneumonia); and a third one composed of 4,809 non-segmented images representing three classes (Covid-19, Healthy, and Pneumonia). Then, 48 percolation features were extracted and give as input into six distinct classifiers. Subsequently, the AUC and accuracy metrics were assessed. We used the 10-fold cross-validation approach and evaluated lesion sub-types via binary and multiclass classification using the Hermite polynomial classifier, a novel approach in this domain. The Hermite polynomial classifier exhibited the most promising outcomes compared to five other machine learning algorithms, wherein the best obtained values for accuracy and AUC were 98.72% and 0.9917, respectively. We also evaluated the influence of noise in the features and in the classification accuracy. These results, based in the integration of percolation features with the Hermite polynomial, hold the potential for enhancing lesion detection and supporting clinicians in their diagnostic endeavors.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.