2025
Autores
Capela, D; Lopes, T; Dias, F; Ferreira, MFS; Teixeira, J; Lima, A; Jorge, PAS; Silva, NA; Guimaraes, D;
Publicação
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Abstract
Mineral identification is a challenging task in geological sciences, which often implies multiple analyses of the physical and chemical properties of the samples for an accurate result. This task is particularly critical for the mining industry, where proper and fast mineral identification may translate into major efficiency and performance gains, such as in the case of the lithium mining industry. In this study, a mineral identification algorithm optimized for analyzing lithium-bearing samples using Laser-induced breakdown spectroscopy (LIBS) imaging, is put to the test with a set of representative samples. The algorithm incorporates advanced spectral processing techniques-baseline removal, Gaussian filtering, and data normalization-alongside unsupervised clustering to generate interpretable classification maps and auxiliary charts. These enhancements facilitate rapid and precise labelling of mineral compositions, significantly improving the interpretability and interactivity of the user interface. Extensive testing on diverse mineral samples with varying complexities confirmed the algorithm's robustness and broad applicability. Challenges related to sample granulometry and LIBS resolution were identified, suggesting future directions for optimizing system resolution to enhance classification accuracy in complex mineral matrices. The integration of this advanced algorithm with LIBS technology holds the potential to accelerate the mineral evaluation, paving the way for more efficient and sustainable mineral exploration.
2025
Autores
Teixeira, LF; Montenegro, H; Bonci, E; Cardoso, MJ; Cardoso, JS;
Publicação
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - Second Deep Breast Workshop, Deep-Breath 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
Breast cancer locoregional treatment includes a wide variety of procedures with diverse aesthetic outcomes. The aesthetic assessment of such procedures is typically subjective, hindering the fair comparison between their outcomes, and consequently restricting evidence-based improvements. Most objective evaluation tools were developed for conservative surgery, focusing on asymmetries while ignoring other relevant traits. To overcome these limitations, we propose SiameseOrdinalCLIP, an ordinal classification network based on image-text matching and pairwise ranking optimisation for the aesthetic evaluation of breast cancer treatment. Furthermore, we integrate a concept bottleneck module into the network for increased explainability. Experiments on a private dataset show that the proposed model surpasses the state-of-the-art aesthetic evaluation and ordinal classification networks. © 2025 Elsevier B.V., All rights reserved.
2025
Autores
Alvarez, ML; Bahillo, A; Arjona, L; Nogueira, DM; Gomes, EF; Jorge, AM;
Publicação
IEEE ACCESS
Abstract
Sound-based uroflowmetry (SU) is a non-invasive technique emerging as an alternative to traditional uroflowmetry (UF) to calculate the voiding flow rate based on the sound generated by the urine impacting the water in a toilet, enabling remote monitoring and reducing the patient burden and clinical costs. This study trains four different machine learning (ML) models (random forest, gradient boosting, support vector machine and convolutional neural network) using both regression and classification approaches to predict and categorize the voiding flow rate from sound events. The models were trained with a dataset that contains sounds from synthetic void events generated with a high precision peristaltic pump and a traditional toilet. Sound was simultaneously recorded with three devices: Ultramic384k, Mi A1 smartphone and Oppo Smartwatch. To extract the audio features, our analysis showed that segmenting the audio signals into 1000 ms segments with frequencies up to 16 kHz provided the best results. Results show that random forest achieved the best performance in both regression and classification tasks, with a mean absolute error (MAE) of 0.9, 0.7 and 0.9 ml/s and quadratic weighted kappa (QWK) of 0.99, 1.0 and 1.0 for the three devices. To evaluate the models in a real environment and assess the effectiveness of training with synthetic data, the best-performing models were retrained and validated using a real voiding sounds dataset. The results reported an MAE below 2.5 ml/s and a QWK above 0.86 for regression and classification tasks, respectively.
2025
Autores
Kasapakis, V; Morgado, L;
Publicação
CoRR
Abstract
2025
Autores
Tosin, R; Rodrigues, L; Santos-Campos, M; Gonçalves, I; Barbosa, C; Santos, F; Martins, R; Cunha, M;
Publicação
SMART AGRICULTURAL TECHNOLOGY
Abstract
This study demonstrates the application of a tomography-like (TL) method to monitor grape maturation dynamics over two growing seasons (2021-2022) in the Douro Wine Region. Using a Vis-NIR point-of-measurement sensor, which employs visible and near-infrared light to penetrate grape tissues non-destructively and provide spectral data to predict internal composition, this approach captures non-destructive measurements of key physicochemical properties, including soluble solids content (SSC), weight-to-volume ratio, chlorophyll and anthocyanin levels across internal grape tissues-skin, pulp, and seeds-over six post-veraison stages. The collected data were used to generate detailed metabolic maps of maturation, integrating topographical factors such as altitude and NDVI-based (normalised difference vegetation index) vigour assessments, which revealed significant (p < 0.05) variations in SSC, chlorophyll, and anthocyanin levels across vineyard zones. The metabolic maps generated from the TL method enable high-throughput data to reveal the impact of environmental variability on grape maturation across distinct vineyard areas. Predictive models using random forest (RF) and self-learning artificial intelligence (SL-AI) algorithms showed RF's robustness, achieving stable predictions with R-2 >= 0.86 and MAPE <= 33.83 %. To illustrate the TL method's practical value, three hypothetical decision models were developed for targeted winemaking objectives based on SSC, chlorophyll in the pulp, and anthocyanin in the skin and seeds. These models underscore the TL method's ability to support site-specific management (SSM) by providing actionable agricultural practices (e.g. harvest) into vineyard management, guiding winemakers to implement tailored interventions based on metabolic profiles rather than only cultivar characteristics. This precision viticulture (PV) approach enhances wine quality and production efficiency by aligning vineyard practices with specific wine quality goals.
2025
Autores
Teixeira, J; Klöckner, P; Montezuma, D; Cesur, ME; Fraga, J; Horlings, HM; Cardoso, JS; de Oliveira, SP;
Publicação
Deep Generative Models - 5th MICCAI Workshop, DGM4MICCAI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
In addition to evaluating tumor morphology using H&E staining, immunohistochemistry is used to assess the presence of specific proteins within the tissue. However, this is a costly and labor-intensive technique, for which virtual staining, as an image-to-image translation task, offers a promising alternative. Although recent, this is an emerging field of research with 64% of published studies just in 2024. Most studies use publicly available datasets of H&E-IHC pairs from consecutive tissue sections. Recognizing the training challenges, many authors develop complex virtual staining models based on conditional Generative Adversarial Networks but ignore the impact of adversarial loss on the quality of virtual staining. Furthermore, overlooking the issues of model evaluation, they claim improved performance based on metrics such as SSIM and PSNR, which are not sufficiently robust to evaluate the quality of virtually stained images. In this paper, we developed CSSP2P GAN, which we demonstrate to achieve heightened pathological fidelity through a blind pathological expert evaluation. Furthermore, while iteratively developing our model, we study the impact of the adversarial loss and demonstrate its crucial role in the quality of virtually stained images. Finally, while comparing our model with reference works in the field, we underscore the limitations of the currently used evaluation metrics and demonstrate the superior performance of CSSP2P GAN. © 2025 Elsevier B.V., All rights reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.